
Risky and rapid
design spaces
Developing a digital
ticket sales cooperative

Thesis to get the degree of cand.it

Risky and rapid design spaces:

Developing a digital ticket sales

cooperative

Expanding design space and reducing development
complexities by means of rapid application development and

co-realization

Benjamin Bach - benb@itu.dk

Supervisor:

Brit Ross Winthereik - brwi@itu.dk

June 3, 2013

IT University of Copenhagen

Digital Design and Communication

Technologies in Practice dept.

Software development is an activity of overall design with

an experimental attitude

Peter Naur, 1985

Contents

Abstract 1

1. Introduction 5
1.1. Background . 5
1.2. Problem statement . 7
1.3. Contributions of the study . 8
1.4. Overview . 8

2. Theory 9
2.1. Overview . 9
2.2. Synthesis de�nition . 10

2.2.1. Supporting de�nitions . 11
2.3. Ethnography and software development 11

2.3.1. Cautious ethnomethodologists 13
2.3.2. Design and implementation: A continuum 14
2.3.3. Co-realization . 17

2.4. Rapid Application Development . 18
2.4.1. Technological acceleration . 21
2.4.2. Changing organizational structures 22

2.5. Risk . 23
2.5.1. Assumptions of agile development 24
2.5.2. Cost of user involvement . 24
2.5.3. Lowering development costs 26
2.5.4. Complexities in software development 26

2.6. Entrepreneurship . 28
2.7. Case and research methods . 30

2.7.1. Overview of activities . 31
2.7.2. Project establishment . 31
2.7.3. Software development and sketching: A re�ective process . . 33
2.7.4. Case study methods . 35
2.7.5. Research methods . 36

2.8. Summary . 36

3. Outcome 39
3.1. Case study: Organizations, environment, decisions 39

3.1.1. Project establishment . 40

i

Contents Contents

3.1.2. Participants . 43
3.1.3. Time line . 45
3.1.4. Nature of the Cooperation 46
3.1.5. Risks . 48
3.1.6. Finding solutions to risks within the meeting space 50
3.1.7. Ethnographic bias and IT facilitation 53
3.1.8. Planning the project . 55
3.1.9. Moving towards design-in-use 56
3.1.10. Arriving at design-in-use and rapid development 60
3.1.11. Hidden decisions . 65
3.1.12. Testing the system in its real environment 67

3.2. Software product . 68
3.2.1. Application functionality . 69
3.2.2. Technologies in use . 72

3.3. Summary . 75

4. Discussion and Analysis 77
4.1. Overview . 77
4.2. Case study practiced as research . 77

4.2.1. Research methods . 78
4.2.2. Case study practices . 78
4.2.3. Missed points of inquiry . 79

4.3. Results of the case study . 80
4.3.1. Contemplating alternatives . 82
4.3.2. Reducing costs and complexity 83
4.3.3. Technological enablers . 84
4.3.4. Participation vs. non-participation 85

4.4. Risky and rapid design spaces: Scope and applicability 87
4.4.1. Design-in-use; Co-realization, PD, and agile methods 87
4.4.2. Project establishment . 90
4.4.3. Assumptions and limitations of agile methods 91
4.4.4. Prototypes and in-production artifacts: Convergence of design 91
4.4.5. Risks . 93
4.4.6. A general recommendation for future work 94

4.5. Summary . 94

5. Conclusion 97
5.1. Findings . 97
5.2. Limitations and future work . 98
5.3. Recommendations . 98
5.4. Epilogue: A bit of normativity . 99

Acknowledgments 101

ii

Contents

A. Communication and data 102
A.1. Project plan . 102
A.2. Project description (attached document) 102
A.3. Diary (not attached) . 102

B. Application 103
B.1. Data model, �rst revision (February 21) 104
B.2. Function list . 105

B.2.1. Purchasing / frontend . 105
B.2.2. Management / backend . 106
B.2.3. Check-in . 108

C. Misc 110
C.1. Popularity of rapid application development 110
C.2. COCOMO estimate . 110

Bibliography 111

iii

Abstract

I present a novel software development approach which is a synthesis of co-realization
and rapid development methods. Analysis of this hybrid through a case study
reveals several strengths when applied to smaller software projects. The method
demonstrates cost e�ciency, but implies a high degree of uncertainty regarding
how to limit and facilitate the pre-analysis process and thus how to arrive at a
construction phase. In the case study, the risks for the participants, implied by the
experimental development approach, did not cause failure of the software project.
Rather, the design space, created by rapid development and IT facilitation, meant
that information for design decisions was easy to obtain, and even resulted in features
outside of the initial project scope. Furthermore, my participation as IT facilitator at
a strategic level of the organization meant that the new IT system and organizational
practices were aligned.

Danish abstract

I følgende specialerapport præsenteres en eksperimenterende tilgang til softwareudvikling,
som er en syntese af 'co-realisering' og 'rapid development' metoder. Analysen af denne
hybrid gennem et case study viser �ere styrker ved anvendelse i mindre softwareprojekter.
Udviklingsmetoden demonstrerer omkostningse�ektivitet, men den indbefatter usikkerhed
vedrørerende bl.a. begrænsning af 'IT facilitering' af pre-analyseprocessen, hvilket vanske-
liggjorde at nå frem til en konstruktionsfase. I case study'et lykkedes det at levere et fun-
gerende stykke software, der opfyldte organisationens mål � på trods af de risici, som delt-
agerne løb ved projektet, som resultat af en ustruktureret, improviserende udviklingsme-
tode. Til gengæld gav udviklingsmetoden udslag i et rigt 'designrum', som hjalp til at
informere design-beslutninger og skabte endda funktionaliteter, der lå ud over projektets
oprindelige formål. Endvidere betød deltagelsen som IT facilitator på et strategisk niveau,
at det nye it-system og organisationens praksisser blev samstemmet.

1

Prologue

Risks, unknowns, and opportunities

Often the unknown outcome of software design is perceived as a risk while it could
also be explored as opportunities. We expect this from a good researcher, so why
not from software developers and designers? By expecting a certain outcome of a
software project, the space for creativity and design is reduced. Consequences of the
complex nature of the social realities we seek to address by means of good design
become risks of unpredictable outcomes. They are, however, also opportunities to
do good and explore the nature of design and use.

The case study, subject of this thesis, started with a pretty cool idea of a platform
that could help the local musical venues, but the project and its participants were
tentative. As the project moved on, it proved possible to both create a usable
product and at the same time �nd a hopefully unique synthesis within a very broad
and inclusive theoretical background. After wrapping up the project and having seen
it perform in its real context, I am relieved that it succeeded to an extend where
the product became more than an academic experiment intended for immediate
deletion. It promises to provide value to the participants and to be performing as
an IT system in real organizations.

The achievement, however, is not sole credit to my own e�ort, but rather as it
is commonly said in open source circles: Standing on the shoulder of giants. I
owe credit to all the great FOSS (Free and Open Source Software) that has been
the foundation of the project, though sadly not within the scope of the academic
mission. FOSS is both subsidizing entrepreneurship all over the world and truly an
enabler of rapid development, because it does not require economic, individual or
organizational costs. FOSS is a tool to get stu� done and build upon other projects.
It means that a developer acting to assist the needs of a particular organization can
boldly brag to solve their needs with little e�ort and transcend the organization's
needs by sharing their solutions with similar organizations on a global scale.

3

1. Introduction

In the present thesis, we explore a synthesis of co-realization and rapid development
by means of a case study. What happens when the developer, acting as IT facilitator,
makes use of rapid development methods? To shed light on this, the study uncovers
examples from its case work and adds analysis, including the interplay between the
IT facilitation, development process, real software as design artifacts, users, and
organizational settings.

The study also intends to contribute to an understanding of the role of contemporary
rapid development tools and techniques in software development methodology, and
how they help reshape the role of IT practitioners. From the case study, we �nd
that co-realization and rapid development can be especially relevant for smaller,
risk-willing organizations, such as typical entrepreneurships.

1.1. Background

In the early 90s, Rapid Application Development (RAD, Martin (1991)) was coined
and described as a formal software development methodology and has slowly died
out in terms of research. Since then, the arena has been given to methodologies
in the broad family of agile development. Once methodologies have been adapted
to complex organizations, social interplays, and a wish to manage and control the
outcome, they seldom seek to address a scenario like:

Software developer: What do you need?
User: I need a function which does 'this'.
...
Software developer: I've implemented 'that'.
User: Thank you, it does 'this' as I expected.

If we remove all the noise of communication channels, con�icts of interest, techno-
logical limits, economy, human resources, dynamic social contexts, etc., we are left
with a very simple 'demand and develop' loop. Is the real world like that? No!
But can we make a setting that at least puts a limit on the noise that clutters our
otherwise simple and clean development model? That is what RAD was initially
trying to achieve, claiming that the low complexity of the model would result in
faster development and yield better results. Following the emergence of RAD, many

5

Chapter 1 Introduction

software development methodologies have based themselves upon a rapid and iter-
ative feedback loop between users and developers. Even though these development
methodologies all have qualities, their complexity remains a fundamental problem.

Methodologies are inherently complex; even methodologists who try to
be scienti�c and professional in their approach to de�ning their processes
too often end up giving too little or too much detail at the wrong level.
(Ramsin and Paige, 2008)

The inclusion of social and organizational reality is easily the main reason that
methodologies become complex. This natural complexity of software environments
creates uncertainty in the outcomes of any software project. Moreover, uncertainty
is just as much a risk of failure to comply with the goals of the project or even do
harm to organizations and users. To reduce complexity in software development, we
have to let go of the inclusion of many formal and structured practices, ultimately
something that may impact guarantees or predictability, but on the other hand leave
room for improvisation and adaptivity.

Co-realization is a term and a set of methodological guidelines centered on the func-
tion of IT facilitation. As a method, Co-realization assumes a role of IT facilitator
played by an individual who understands both the development of software, the
design process, and aims to understand the user and organizational practices. Fur-
thermore, co-realization suggests that we use the role as a means to address that of
organizational change, i.e. that the adoption of a system for a particular purpose
often has wider consequences, which the IT facilitator may be called upon to play a
role in identifying and formulating (Hartswood et al., 2002). In its ideal form, co-
realization's idea of IT facilitation should establish a direct connection between users
and developers, lowering complexity and making way to move from intermittent and
over-formalized participation to a situation where informal interaction between users
and IT professionals becomes a part of everyday experience (Hartswood et al., 2002).
By concentrating such 'facilitation' functions in a single entity and including a more
direct approach to software development, i.e. rapid development, we can achieve a
less complex development process.

6

1.2 Problem statement

1.2. Problem statement

Study and aim

Study A single developer, who is also the researcher, designs and implements a
web application using a combination of rapid development and co-realization.
The main outcome of the study is the process of building the application and
the concurrent formation of an organization owning and using the applica-
tion. This includes access for the developer and researcher to observe and
in�uence decision making, social context, organizational structures, and daily
work routines.

Aim The study should present and test a synthesis de�nition of co-realization and
rapid application development. From the speci�c settings of the case study, the
outcomes of placing a developer in the role of IT facilitator and researcher are
analyzed and discussed. The analysis should also address the use and outcome
of applied software for rapid development and how this software targets and
shapes the development process in a real and concrete environment. From the
outcome, we seek to understand if the approach of using rapid development
and co-realization holds true with respect to complexity reduction and how it
aligns software design and organizational practices.

The case and product

A common practice in the �eld of culture is to outsource ticket sales to private
third-parties. In the case study, I address musical venues who would be interested
in cooperatively owning and running such a system to lower their ticket fees and
furthermore develop a system to target their own needs. Seen in a broader as-
pect, a private third-party's economic pro�t takes up economical space for cultural
consumption, which creates a tension and a divergence of interests between the
third-parties and the venues. In some cases, the fees of ticket sales were so high
that it created a disproportion between the cost of the ticket itself and the fee. This
motivates a need for an internalized ticket sales system that is owned by the venues,
and furthermore would mean that they would be able to open up presales for less
costly shows. By means of addressing this issue, the case study is also a real and
bene�cial project to its participants.

Scope

The study puts a great amount of work on the researcher acting as a developer, who
is intended to conduct �eld notes for later study and at the same time participate in
the project, playing a natural role. This means that the study can achieve neither to

7

Chapter 1 Introduction

perfection. The researcher is subject to the bias that follows from striving towards
methodological guidelines. Furthermore, the case study does not include any holistic
or external observation to its process. Naturally, I do not claim objectivity in the
descriptions of the outcome.

When I address the value and success of the software, I seek to promote an under-
standing of basic software properties as compared to the goals of the project. It is
not meant as an evaluation study, but a simple observation from the outcome of
testing the software in a real environment.

1.3. Contributions of the study

The present study has the following primary contributions:

• A promising synthesis de�nition of co-realization and rapid development

• Outcomes of the case study: The synthesis put to work in a real environment

• An analysis and discussion of the outcome: How the synthesis performed as a
design strategy

1.4. Overview

The thesis report is structured into the following main chapters:

2 Theory: The scienti�c work that has laid the ground for the case study and the
analysis and discussion hereof. This is mainly targeted at an understanding
of a synthesis de�nition (section 2.2) that can be related to a broad variety of
works that are both separated in time and research �elds.

3 Outcome: A presentation of the case study, including the most signi�cant obser-
vations and descriptions of functionalities and technologies.

4 Discussion and Analysis: Firstly, I analyze the case study, relating it to concepts
introduced in the background. The latter part of the chapter discusses how
the case study and synthesis can be understood in a broader perspective with
some focus also dedicated to alternative and related methodologies.

5 Conclusion: Finally, in the conclusion I brie�y state my �ndings, their limita-
tions, and a recommendation for future work along the same path.

8

2. Theory

2.1. Overview

The following chapter outlines the theoretical background of the three main areas of
interest to the case study: Software development methodology, ethnomethodology,
and an applicable scope. More speci�cally the focus of the study is Rapid Applica-
tion Development (RAD, Martin (1991)) and co-realization (Hartswood et al., 2002),
two closely related strategies for software development and design (Figure 2.1) and
the application of a synthesis of both in a risk-willing setting, such as entrepreneur-
ship.

Rapid
Application
Development

Co-realization

Entrepre-
neurship

E
li
m
in
at
e

h
ie
ra
rc
h
ie
s

De
sig
n-i
n-u

se

Sit
ua
ted

dev
elo
pe
rs

W
illing to

take risks

Figure 2.1.: The three most important theoretical areas and their relations which
will be explored in this chapter.

9

Chapter 2 Theory

The common problem and criticism which RAD and co-realization respond to will
be explained later as the state of having a bounded design-process (see section 2.3.2),
but each argue from separate perspectives. The origins of RAD are its criticism of
top-down waterfall models as they are subject to environmental and temporal forces,
making software projects based on these models unlikely to succeed. This is a case
that RAD promises to resolve by introducing more e�cient and e�ective design-
in-use methods and by utilizing new software tools (note that this was 1991). Co-
realization raises a criticism to prior ethnomethodologies by challenging the limits
of what can be observed by ethnographers and what their role should be.

The overall aim of this chapter is to establish a relevant theoretical foundation for the
case study, speci�cally since this case is conducted around the parallel development
of an organization and an IT system. Furthermore, as the system is developed
by a single developer with access to nearly all processes, I dedicate attention to
theoretical works that are relevant through an appreciation of the sociotechnical
nature of software development.

2.2. Synthesis de�nition

Drawing up the theory outlined in this chapter, we envision a synthesis framework
of ideas from co-realization, design space, rapid application development, and the
risks involved in these. We will refer to this synthesis as risky and rapid design
spaces and give the following de�nition:

Risky and rapid design spaces: An IT facilitator (Hartswood et al., 2002) with
knowledge of technological tools for rapid development, is situated in the con-
text of an organization. A design space (Botero et al., 2010) is available to the
IT facilitator and the relevant members of the organization. The IT facilitator
supports participants with the use and design of new technology. Moreover, the
IT facilitator guides the participants through organizational changes caused
by new technology. The IT facilitator conducts meaningful ethnological ob-
servations to inform further design-in-use and development of the technology
through iterations reoccurring to a degree such that design and deployment
become a continuum. The practice of this should respect the risks involved
by subjecting a software design methodology to a preference of day-to-day
innovation over coordination by software requirements.

The framework de�nition is not meant to achieve precision in a way that limits its
scope or turns it into a methodology. It intends for a broad analysis and further
discussion of its outcomes. One example of an aspect that is not covered by the
de�nition is the degree to which an organization can a�ord to be de�ned by its
IT system. Another example is that the de�nition does not mention the nature of
the risks involved � such examples are left for further discussion and analysis (see
chapter 4).

10

2.3 Ethnography and software development

2.2.1. Supporting de�nitions

In addition to the synthesis de�nition, the following de�nitions are given:

Rapid development: Rapid Application Development (RAD, Martin (1991)) refers
to a speci�c application development life cycle. When referring to the study of
and arguments of Martin (1991), I use the term RAD. But rapid development
is seen as a broader methodology, simply a strategy or some set of methods
to implement new design as fast as possible and push back the result to users
for further iteration. No one in particular have de�ned the term, yet the term
exists all over the Internet.

Co-realization: Although no singular de�nition of co-realization is at hand, I �nd
the core understanding of the term to be that of the following. Through being
there, co-realization's aim is to achieve a situation where users and IT pro-
fessionals can spontaneously shift their attention between the di�erent phases
of the system/artifact lifecycle, even to the extent that these cease to exist as
distinct and separable activities. Co-realization means that IT professionals
must help users realize their needs by playing the role of `facilitator' in the
broadest sense of the term. (Hartswood et al., 2002)

IT Facilitator: (continued from above quote) ...this involves interalia acting as de-
sign consultant, developer, technician, trouble-shooter and handy-person. To
support user-led innovation and design-in- use e�ectively, IT facilitators need
to be able to shift their e�orts smoothly between these various tasks as circum-
stances dictate. (Hartswood et al., 2002)

Design space: 1) A design space is always actively co-constructed and explored by
multiple actors through their social interactions with and through technologies
and 2) the participating actors, resources, conditions and supporting strategies
frame the design space available. Botero et al. (2010). See also section 2.3.2.
The term is pluralized to put emphasis on the di�erent nature of design space
and how they occur in dispersed in time and space.

2.3. Ethnography and software development

Ethnographers have long been describing technology's e�ect on organizations, so-
cial life, culture, management and vice versa. Ethnography tends to have exotic
or unintuitive observations. In early eras, such exotic studies took place abroad,
but would later �nd the exotic on the local scene (Neyland, 2007). An example
of this is science and technology studies (STS) where the interplay and interac-
tions between people, organizations, technology and society is the main focus. STS
was made famous by works such as Latour (1987), uncovering the true origins of
scienti�c work, not as pure science but a social construction. This has provided
an understanding of ethnography not just as an observational research method to

11

Chapter 2 Theory

examine and explain the world as is, but as an important tool to inform design
decisions. Especially the �eld of Computer Supported Collaborative Work (CSCW)
has adopted ethnomethodology, where many have argued that due to the complexity
of such systems and their environments, ethnomethodology was a key tool to unlock
the problems that arise from very complex social settings. A great example is an
early 1992 study:

Ethnographic methods are introduced, and applied to identify the so-
cial organization of this cooperative work, and the use of instruments
within it. On this basis, some metaphors for the electronic represen-
tation of current manual practices are presented, and their possibilities
and limitations are discussed. (Hughes et al., 1992)

Hughes et al. (1992) presents a study of ethnomethodology used to foster design
ideas for a software project (an air control system) with respect to the social orga-
nization. The study is conducted in light of the achievements of HCI and cognitive
psychology, but with an objective of unlocking perspectives of social organization,
hinting that this is de�nitely not within reach and tradition of their �eld's (computer
science) conventional HCI methods. Their study contained multiple ethnographic
methods (as this case study also will � see section 2.7) with a non-interventionalist
approach, observing only already existing technological 'artifacts'. To illustrate just
how strictly they treated their observational concepts and how they saw them appli-
cable, they envisioned that ethnographic results should be compiled such that some
expert could extract and transform the data generated from observations:

These precepts cannot be simply `applied to' or `mapped onto' a domain
in such a way as to yield, in mechanical fashion, a set of results. Rather
� and in a manner which mirrors the overall relationship between ethno-
graphic studies and systems design � they act as a resource, as a set of
alerting mechanisms, and as a means of orientation. As a hermeneu-
tic, interpretive or phenomenological approach, the aim is to produce a
`thick description' (Geertz (1973)) as a means to discovering the social-
ity of these activities in context, or situated actions. In the end � and
somewhat elusively � the aim is to grasp `what is really going on' in the
course of a piece of work, `what is really the problem' about doing it,
and what instruments might be devised to help resolve these problems.
(Hughes et al., 1992)

Most notably, their work seeks to give input to the development of a new technology,
but fails to mention how this technology will change its environment once deployed.
They conclude that results gathered from ethnographic work are complex and hard
to operationalize:

There is no formal modeling of functions or requirements, no analysis of
data �ow, no tabulation of viewpoints, no separation between function,
implementation and interface. There are only descriptive, interpretive,
incomplete quite subjective accounts of the and seemingly and the trou-

12

2.3 Ethnography and software development

bles involved in socially accomplishments organized action. (Hughes
et al., 1992)

While we suggest that the ethnographic approach o�ers an important
additional resource in the artful and creative work of designing systems,
the setting is far too complex for its �ndings to be simply predictive.
(Hughes et al., 1992)

Onwards, a whole set of methods in the �eld of Participatory Design (PD) (Kensing
and Blomberg (1998), Tjørnhøj-Thomsen and Whyte (2008)) have been developed
in a more hybrid fashion than technomethodology (Hughes et al., 1992), thus ac-
tually �nding more speci�c ways to yield the results of ethnographic work in the
design process. The schools of participatory design and contextual design (Beyer
and Holtzblatt, 1999) can be seen as hybrid disciplines, or more pragmatic �elds,
in which the practical circumstances under which software has been developed are
taken serious:

Compromise is essential in a design context it is argued and so e�orts
have been made to integrate a softer, more user-friendly version of eth-
nomethodological inquiry with other approaches to design, such as Par-
ticipatory Design (...) These hybrid forms seek to cherry-pick and com-
bine core disciplinary concepts and practices for the practical purposes
of design. (Crabtree, 2004)

The argument then follows that such hybrids have caused a segregation between
those that create a system, and those that need or use a system, and that the design
is an objective to reach out and meet.

2.3.1. Cautious ethnomethodologists

The many notions we �nd of how the limitations of scoping ethnography to the
design process or �nding ways of studying the true nature of technology design �ts
perfectly with the core of this thesis' objectives.

Work on the aforementioned air tra�c control system (Hughes et al., 1992) revealed
that the ethnographer should be informed by systems requirements, and that sys-
tems requirements should be re-iterated through debrie�ng meetings Bentley et al.
(1992) through a notion of ethnographically informed systems development. Their
work also had one very signi�cant decision:

Because of the time constraints on our project, we could not carry out an
ethnographic study then develop the software system; rather the ethnog-
raphy and the systems development had to be concurrent activities.
(Bentley et al., 1992)

Even though earlier history's technological constraints and development costs could
be considered a higher cost than modern day technology allows, the interplay be-
tween ethnographic �ndings and system design and development are found in these

13

Chapter 2 Theory

early works. Similarly in Kensing (2003) on participatory methods, a principle
is advocated under the notion of Co-development, outlining an interplay between
development of IT, organizational development and development of user's quali�ca-
tion. Kensing (2003) quotes previous sociotechnological approaches as inspiration,
discussing that in its essence, the parallel development of both social and technical
systems was desirable, but had fostered a critique that Kensing (2003) responds to.
The response is a principle stating that we should include the development of user's
quali�cations as an o�set for the limitations introduced by the parallel development
of social and technical systems. Yet, the principle only concerns informing the design
process and generating the necessary tools, documents and measures for deploying
the �nal product.

While the ethnographic tools from PD are indeed very useful, it is the theoretical
principles, scope of design, and the outcome of PD that has fostered a criticism
which the next section of this chapter is dedicated to outline. This includes both
arguments from the PD literature, and from subsequent new theoretical models that
aim at a combined understanding of not only social reality as an informer of tech-
nological design, but a combination of both technological design and organizational
interventions, alterations and consequences of design once deployed.

2.3.2. Design and implementation: A continuum

Implementation

Design-in-use

Contextual

feedback

Deployment
of new

application

PD techniques

Design

Requirements

Requirements,

prototypes

PD techniques,

contextual

inquiry

Figure 2.2.: Two main paradigms for iterative application of ethnographic methods:
design→implementation and design→requirements.

Design has a very critical position in the application of ethnomethodology and the
many di�erent attempts of studying and unlocking the emergence of both organi-
zations and technological systems. The reason for its critical position is, that if
design→implementation is the (often sublimated) discourse, it means that systems
must �rst be designed, then implemented and then changed through a new design
process. This will be referred to as bounded design. It relies on a theoretical un-
derstanding that design is separable from implementation or deployment of some

14

2.3 Ethnography and software development

bounded product, i.e. in retrospective to the design process, it would make sense to
answer the question �What were we designing?�, and the answer would then contain
the product and all of its properties. However, contrary to whether this discourse is
signi�cant or not, we could repeat the design→implementation process enough times
to make the question of the �nished product unbounded by the mere fact that it
is subject to constant re-iteration (see Figure 2.2) with no guarantees of theoretical
saturation. The logic is so fundamental, it was already formulated by Peter Naur in
1965:

... we are dealing with three elements: problems, tools, and people,
and the essence of the situation is the interplay between them. More
speci�cally, we cannot, as people, think of a problem without at the
same time implying some kind of tool. Stronger yet, when the tool
changes the problem is not the same any more. On the other hand, our
opinion about what is a proper, or desirable, tool surely depends on our
understanding of the problem. In any case the problem and tool are
nothing if they are not recognized as such by a person � that is where
the people come in. (Naur, 1965)

It is stated in literature on Participatory Design that iteration is desirable. In the
description of MUST, Kensing (2003) suggests iterations as a principle to re�ne
the results of ethnographic work, for instance by confronting users with what they
have said versus what they have been observed to do by the ethnographer or IT
professional. In this way, the principles that guide MUST acknowledges that as
a new understanding of the requirements is re�ected between the IT professional
and users, design can the be consequently altered. This iteration could continue to
re�ne design documents into eternity, but MUST suggests to move on to (rapid)
prototyping after a couple of iterations. The belief that iterations are the solution
is stated as such:

It would seem that a thorough design founded on data collection, analysis
and prototypes and perhaps several iterations would be key to a high-
quality IT system. Indeed, there are also several levels of what it means
to collect data and inform the design-process which are discussed in detail
in many works on PD. (Kensing, 2003)

Without regarding whether ethnomethodology should be seen as a subjugated tool
of software development methodologies or as an individual player, it is safe to
say that software development methodologies have abandoned the thought of a
design→implementation scenario through adaptation of agile processes (already
from the beginning of the 90s!), while the �eld of ethnomethodology has been a
little slower at renouncing the principle of software development through bounded,
informed design.

15

Chapter 2 Theory

Design space

Design does not, however, have to be understood as a monolithic �gure, and is
expanded in Botero et al. (2010). Instead of talking about a design of a system,
they de�ne design space as the space of possibilities for realizing a design, seeing
participants in a continuum of consumption to active creation.

We argue that: 1) a design space is always actively co-constructed and
explored by multiple actors through their social interactions with and
through technologies and 2) the participating actors, resources, condi-
tions and supporting strategies frame the design space available. (Botero
et al., 2010)

In their discussion of expanding the conventional design space, they also choose to
de�ne roles of designers more loosely in order to avoid unproductive user-designer
dichotomies (Botero et al., 2010), a criticism that should be adapted by any facilita-
tor of a design process. In presenting the foundation for the design space expansion,
they admit to a technological reasoning, as the a�ordability to alter a design is es-
tablished on technological tools. In other words the design space is actively sought
and expanded as part of an organization and the technical tools that are present
within. One example that the authors give is the use of wikis, which allows users
to design their own information system, creating content with vast formatting op-
tions, categorizing, uploading etc. In the de�nition of design space, it means that
all members of the organization are given the tools to evolve social practices, con�g-
ure, integrate, remix, assemble components, use software modules and libraries and
program and write modules freely, as this is the design space that a wiki o�ers.

This view is shared by Hartswood et al. (2002):

Co-realization means that IT professionals must help users realize their
needs by playing the role of `facilitator' in the broadest sense of the term.
(Hartswood et al., 2002)

What they say is largely uni�able with Botero et al. (2010)'s notion of expanding
the design space, as the role of facilitator is required in the broadest sense of the
term to help users realize their needs, however there are no direct concerns of un-
productive user-designer dichotomies. Unifying the idea of design spaces and IT
facilitation could mean that facilitators must make themselves redundant by pro-
viding a technological platform that can be evolved by the users themselves or to
o�er their assistance such that bounded design vanishes:

Through being there, co-realization's aim is to achieve a situation where
users and IT professionals can spontaneously shift their attention be-
tween the di�erent phases of the system/artifact lifecycle, even to the
extent that these cease to exist as distinct and separable activities.
(Hartswood et al., 2002)

Both Botero et al. (2010) and Hartswood et al. (2002) share the notion of design-in-
use, and they refer to the same idea: That design can be conceptualized by users and

16

2.3 Ethnography and software development

observers in the process of using a system, and that designing in arti�cial contexts
such as prototyping is inferior. This relates to design ideas both on a re�nement
level and on an innovative level:

[O]ne important aspect of design-in-use is recognizing and supporting
the innovative processes of adoption and recon�guration to ensure those
functions meet the demands of professional adequacy. (Hartswood et al.,
2002)

2.3.3. Co-realization

Co-realization is a means to expand design space (see section 2.3.2), but this prop-
erty holds more value than simply including more users and eliminating the notion of
bounded design. It puts emphasis on tightly coupled, `lightweight' design, construc-
tion and evaluation techniques. Co-realization does not abandon techniques from
inspirational ethnomethodology but seeks a new setting, in which the role of the fa-
cilitator is key to build a better bridge between the results of ethnographic work and
the implementation in the technological system. This is done by the boundary be-
tween IT production and use which addresses the situated consequence of having IT
developers performing their work in the same context as the users, receiving direct
feedback and being able to directly access the feedback necessary to both revolution-
ize and optimize aspects of the technological system. Being there is fundamental
to development of the system, and lightweight is fundamental to the principal that
guides design decisions, meaning that decisions are made with an intervention-like
approach in which they are subject to change as rapidly as they have been deployed.

The emphasis put on the IT facilitator also means that a number of properties or
skills have to be possessed by this individual. This is a debatable topic, which this
study only investigates by discussing how IT facilitation ventured in the case study.
Furthermore, there is no concrete set of methods de�ned for the IT facilitator, just
an overall guideline:

Not only does the IT facilitator assemble the technologies, the technolo-
gies are the main focus of his daily activity, and a focus for his ob-
servations of and interactions with [the organization's] team members.
Furthermore, the IT facilitator will seek to keep up with relevant tech-
nological developments. So, while the technologies are a constant factor
in the life of the IT facilitator, this is not necessarily the situation for
[the organization's] team members. (Hartswood et al., 2002)

Foci of users and the IT facilitator are di�erent, and thus the critique from Botero
et al. (2010) remains that while team members from the organization are concerned
with having the IT system solve their objectives, the IT facilitator may be con-
cerned with the costs and possibilities of satisfying those objectives. But part of
this discrepancy is addressed by having users develop and express their understand-

17

Chapter 2 Theory

ing of the IT system, a principle resembling Kensing (2003)'s development of user's
quali�cations :

This focus enables the generation of a corpus of understanding com-
prising each member's speci�c experience with using the system that
can feed into various forms of documentation, crib sheets, and advice to
users in a dynamic and incremental way. (Hartswood et al., 2002)

Furthermore, the idea of having users re�ect on the IT system also means that
they are able to share knowledge on how to alter and con�gure an IT system, which
exempli�es an expansion of their design space. One of the case studies of Hartswood
et al. (2002) also illustrates how the co-realization of an IT system does not only
relate to design and changes to the IT system, but also touches upon the scope of
use and consequences that the IT system has on the organizational system: By being
there, the IT facilitator is able to give feedback to the users about their usage of
the system, and to make suggestions to organizational changes that may both be an
intended use of the IT system or a recon�guration or redesign of the organization
to the bene�t of organizational objectives.

As this study seeks to give space to an organizational establishment all the way from
scratch, the synergy between an IT system and organizational system is essential
and the theoretical foundation laid out by Botero et al. (2010) and Hartswood et al.
(2002) are fundamental to describing the case and illustrating their work.

2.4. Rapid Application Development

Figure 2.3.: Rapid Ap-
plication Development,
1991. The book cover of
Martin (1991).

To the top-down waterfall models or requirements model-
ing of software development which were dominant until the
90s, the key criticism has pertained requirements model-
ing as subject to change by environmental and temporal
forces and thus unlikely to succeed. This view was not only
held by the founders of RAD, but cheered on as agile soft-
ware development methods started to emerge in the mid
90s (Wikipedia, 2013a) and to this day, the adoption of ag-
ile methods is reported continued growth (VersionOne.com,
2012). RAD entered the stage as an ancestor of agile meth-
ods with an intention to redeem higher speed, better quality
and lower costs (Figure 2.3), and indeed in spite of di�erent
views of whether RAD is a set of tools for rapid prototyp-
ing (Computer Assisted Software Engineering, CASE) or a methodology, the impact
compared to previous methodologies is rated in order of magnitudes (Agarwal et al.,
2000).

18

2.4 Rapid Application Development

Figure 2.4.: RAD model in Shelly et al. (2011), the requirements phase and cutover
phase have been shortened.

Since its emergence, RAD has faded as a software development methodology
(Howard, 2002), but certain properties have remained although no universal def-
inition of RAD exists, Agarwal et al. (2000):

Technological design tools: Rapid prototyping became heavily researched and
also meant that the notion of �rapid development� was adopted by many soft-
ware projects that did not address RAD itself (Django Software Foundation
(2013), Wirdemann and Baustert (2008), McConnell (2010)).

Iterative development: Design is no longer seen as a one-step process, but takes
place continuously. This is both the case in ethnomethodology, for instance
Participatory Design, and agile development .

User Involvement: User participation is principle to design and development both
in-context (RAD and co-realization) and through meetings, focus groups, and
design panels (PD, SCRUM, and other agile methods).

In Shelly et al. (2011)'s model of RAD (see Figure 2.4), they show two overlapping
and interchanging processes, namely user design and construction. These activities
are shown to overlap, as the construction and user design may take place in the same
context, and in the same sequence. The processes can be merged to the point where
users are constructing the program themselves or directly instructing the developers
while at work.

An illustration of the broad adaption of rapid development is found in Howard
(2002), stating that RAD is still a misunderstood concept, and the introduction of
McConnell (2010)1 starts:

1Source is not an academic book, but is highly popular in its �eld.

19

Chapter 2 Theory

To some people, rapid development consists of the application of a single
pet tool method. To the hacker, rapid development is coding for 36 hours
at a stretch. To the information engineer, it's RAD � a combination of
CASE tools, intensive user involvement, and tight time boxes. To the
vertical-market programmer, it's rapid prototyping (...). To the manager
desperate to shorten a schedule, it's whatever practice was highlighted
in the most recent issue of Business Week. (McConnell, 2010)

Even though RAD has been proceeded by multitude of understandings of rapid
development (which I use as a broader and hopefully less controversial term), we
can recognize a number of the original ideas in newer concepts. Firstly, RAD relies on
CASE tools, and while the initial tools that the literature was based upon have found
replacements long ago, the same type of tools are still in use. CASE is supportive
to the idea that an expanding design space should employ technological tools to
support users in taking part in the design process. CASE tools were, however,
created for system designers' needs, for instance providing aid for rapidly developing
data models, user interfaces and prototypes. On top of that, it allowed a quicker
transition from software models to actual software, for instance UI developing tools
would directly feed the application building process, and software modeling tools
(such as the UML scheme) would export their models to a native programming
language. Only a very little or none of such software's output would result in
visualizations intended for normal users.

Figure 2.5.: A conceptual model of di�erent layers of software.

An objection against its capability of expanding design space, is that CASE does
not give users direct access to perform system development, but the lines can be
more blurry in practice, as many platforms are making CASE tools redundant. For
instance, a CMS (content management system) may allow its administrators (who
can be a member of an organization with some training) to install plugins and extra

20

2.4 Rapid Application Development

modules to gain increased functionality. This is given that a system developer has
installed the CMS to allow for such behavior. In this example, software is altered
and con�gured by users and administrator roles (users with special permissions),
which is the case with most software, especially database-driven web applications
(Cloud.com, 20112).

Conceptually, we can use the layers introduced by Botero et al. (2010) to �t in the
CASE tools from RAD, but with an understanding those tools as the possibilities
that are supported by the underlying rapid development framework (see Figure 2.5).
The abstraction introduced by the layers means that we can point to an IT system
con�guration layer and an IT system application layer. All layers together can be
understood as the IT system, but parts of the system are more and less relevant
to the organizational reality, for instance the server layer may introduce technical
faults and economical costs, but it should be simple to the �design� of this layer
what the desired criteria are.

Indeed, the tools and methodology are inextricably linked: the tools
enable the methodology and circumscribe what is accomplished during
a development project. (Agarwal et al., 2000)

Or: The better we understand the reality of the tools of our methodology, the
better we can de�ne the methodology. The expansion of the design space and the
co-realization e�ort are both grounded in the tools at hand, and how we choose
to use them. In theory, those tools could entirely transcend the design capacities
of the IT facilitator and the users con�guring the IT system to achieve whatever
organizational goals, but in reality we need to describe exactly what those tools
are capable of in their context, because their limits and possibilities will de�ne
organizational changes.

2.4.1. Technological acceleration

A critical part of rapid development, is the time it takes to implement a change
and complete a loop or an iteration of development→feedback. The faster the
iterations, the more adjustments and features can be a�orded. This is the obvious
role of technology as an enabler of rapid development, and its relations to expanding
design spaces and entrepreneurship.

[Data] Models can play an important role here, especially if tools exist
for generating signi�cant portions of the code from the models. (Turk
et al., 2002)

Data models are at the heart of software architecture and agile processes (Turk et al.,
2002), a key example of how the choice and opportunities of technology serve as an

2A 2011 survey reveals that only 20% of 521 businesses using enterprise software did not have
any plans to move into cloud computing. Furthermore, most use cases were related to CMS,
document handling, ERP and CRM.

21

Chapter 2 Theory

active enabler of the development process. The important point here is that data
models serve on one hand as a development tool to e�ciently build an application,
but at the same time it becomes a manifestation of decisions and encapsulation of
the problems and solutions that an IT system is addressing. Because there are tools
to convert data models (especially object-oriented) to diagrams that can be subject
to discussions with non-technical participants and conversely to programming code,
the models become an e�cient multi-dimensional tool, supporting both the design
and development process.

Other important framework tools are the programming paradigms and automation
of typical processes. Rapid frameworks are usually built to support object-oriented
data models (Wikipedia, 2013b) and support typical manipulation tasks such as
CRUD (Create/Update/Delete) scenarios, accelerating the development of typical
user interfaces necessary. Other functions include �drag-and-drop� or wizard based
development, automation of common tasks such as project deployment, easy integra-
tion of third-party applications / plugins, and encouragement of e�ciency-focused
programming principles, for instance Don't Repeat Yourself (DRY) and Model-View-
Controller (MVC).

Since most applications are web-based, and this case study in particular, it's worth
noting that both technologies for creating web applications (HTML, CSS, JavaScript)
have improved in aspects of development e�ciency, and many popular libraries have
been created to support development processes. These include Twitter Bootstrap
(Twitter, 2013), a sleek, intuitive, and powerful front-end framework for faster and
easier web development and jQuery (jQuery, 2013) for e�ciently manipulating and
accessing elements on a web page:

It makes things like HTML document traversal and manipulation, event
handling, animation, and Ajax much simpler with an easy-to-use API
that works across a multitude of browsers. With a combination of ver-
satility and extensibility, jQuery has changed the way that millions of
people write JavaScript. (jQuery, 2013)

The raison d'être of frameworks are that they simplify or provide functionality that
is common in application development, and furthermore they often fuse performance
and design issues guided by best practice discussions. But frameworks di�erentiate
on aims and functionality, and arguably also on to which degree they are well-
designed. They also require learning. Therefore, the technological acceleration
of rapid development in a software project is dependent on the developer or IT
facilitators familiarity with particular frameworks.

2.4.2. Changing organizational structures

One of the most important arguments pro RAD and other agile methodologies con-
cern the changing settings of a software project. This was how RAD was inspired,
to solve a problem of how demands, social contexts and project speci�cations would

22

2.5 Risk

change before the original project speci�cations could be implemented (Shelly et al.,
2011, see Figure 2.6). This led to criticism, arguing that RAD is actually �Rough
And Dirty� (Howard, 2002), but we need to understand that software delivery time
and quality are not opposite sizes, but rather understand that RAD addresses actual
issues that arise do to bounded design (see section 2.3.2):

What RAD tries to avoid is the bureaucratic nature of current quality
control and assurance practice. (Howard, 2002)

But while understanding RAD as a response to lack of coherence between organi-
zational goals and some waterfall model, we should also keep in mind, that RAD is
still a software design methodology, ie. its aim is to create technology that aligns
with organizational strategies.

2.5. Risk

In this section, we shall look at risks relevant to rapid development and ethnomethod-
ological tools (see also section 2.7). Risks can be seen as a central aspect when using
a sparsely managed approach as rapid development, where the project is established
with little assumption or assessment of costs and outcomes due to the cut-away of
requirements and project management. Alternative development methodologies are
prone to risks of their own, which is saved for the discussion of the likely bene�ts
of risky and rapid design spaces. Other risks are general to software development,
especially in cases of complex organizational structures and collaborative features.

Software risk can be de�ned as the cases of outcome in which software is not success-
ful (Addison and Vallabh, 2002), i.e. the chances of software failure. Studies of such
failure from 80's (Grudin, 1988) and up to 00's (Addison and Vallabh, 2002) agree
that risks of failure can be related to the following key areas: Extra work and lack of
bene�t, favoring of management needs, and problematic/impossible evaluation and
analysis. It can be argued that rapid methodology is either more or less risky than
its alternatives.

When risks are taken deliberately, the action also relies on some criteria of success.
However, if the requirements are loosely de�ned, the risks also become more abstract.

Figure 2.6.: Dilbert

23

Chapter 2 Theory

In Addison and Vallabh (2002)'s study, risks are measured against failure to comply
with requirements, but even though this measure is weakened by having little or no
explicit requirements, the risk of failure can still be grasped. Even without explicit
requirements and a day-to-day take on design, the aims and objectives of a project
may persist. Risks are still that the project fails to meet aims and objectives, even
if they are changed underway.

Software development may be risky in its nature, and rapid development and/or
participatory methodologies may introduce more risks and relieve others, but the
scenario �ts well in that of entrepreneurship, which shall be elaborated in section 2.6.

2.5.1. Assumptions of agile development

There are a number of risks which are directly related to using rapid application
development seen as a type of agile development method. This is caused by the
assumptions that agile development makes, some of which are hard to avoid without
breaking with the agile scheme:

The unavailability of customers was frequently the highest risk identi�ed.
(Turk et al., 2005)

The above is a risk well-worth considering before choosing a rapid development
method: If the users or customers are not available to give feedback, a de�ning
part of the design process is removed. As described in Turk et al. (2005), agile
development makes a number of assumptions (see Table 2.1). These assumptions
apply to rapid development, and will be given consideration when analyzing the
outcome of the case study.

2.5.2. Cost of user involvement

It is not always the case that user participation in the RAD cycle (see Figure 2.4)
yields constructive results. For instance, users may repeat already known views,
present views that defeat the purpose of the project or ask for features that the IT
facilitator cannot grand. Or the results from user participation could potentially be
derived more e�ciently with other methods.

Questions must be asked about: the aims of participation, the forms
of participation that are being advocated, and the skills and strategies
required of practitioners. Dearden and Rizvi (2008)

To rapid development, the degree of participatory design is not, however, a �xed
quantity. Neither is it to co-realization (Hartswood et al., 2002) which does not rule
out the option of non-participatory design decisions. This leaves a space for the IT
facilitator and management to still make changes and priorities within the cycle of
design and construction (see section 4.3.4). The discussion of participation is not,

24

2.5 Risk

Assumption

Visibility Project visibility can be achieved solely through
delivery of working code.

Iteration A project can always be structured into short
�xed-time iterations.

Customer interaction Customer teams are available for frequent
interaction when needed by developers.

Team communication Developers are located in time and place such
that they are able to have frequent, intensive
communication with each other.

Face-to-Face Face-to-face interaction is the most productive
method of communicating with customers and
among developers.

Documentation Developing extensive (relatively complete) and
consistent documentation and software models is
counter-productive.

Table 2.1.: Turk et al. (2005)'s list of common assumptions in agile development,
which extend to our understanding of rapid application development. They list a
total of 14 assumptions, these are just some of them.

however, all or nothing, but takes a direction of solving the issue through mediation
or participatory �gures that are not necessary users or designers exclusively:

While there is discussion in the CSCW literature about how to con-
struct productive relations between those doing work analysis and those
designing CSCW systems, there is no explicit commitment to direct user
participation in design. In fact, some have argued that it is too costly
and logistically problematic to have users directly involved in design (see
Bentley et al., 1992; Hughes et al., 1993). As an alternative, social scien-
tists and others may act as user surrogates or representatives in design
discussions. In PD direct user participation in design is one of the hall-
marks of the �eld although as Mambrey et al. (1998) suggest, sometimes
it is valuable to augment direct user participation with what they refer
to as user advocacy. (Kensing and Blomberg, 1998)

In the sense that surrogates or representatives in design discussions are the same
as Hartswood et al. (2002)'s IT facilitator except for capabilities of understanding
IT development, the argument in Kensing and Blomberg (1998) supports that an
IT facilitator can mend or avoid being too costly and logistically problematic to have
users directly involved in design.

25

Chapter 2 Theory

2.5.3. Lowering development costs

As argued in section section 2.7.3, more and more rapid development frameworks are
showing up, increasing the IT facilitators and developer's ability to meet new design
ideas and reiterate. Supposing that software development has become cheaper or the
support of an expanded design space has deliberately been built into a development
process, experimenting with di�erent ideas and alternatives or changing direction
to avoid some perceived failure becomes more likely. An example of a middleware
targeted at making rapid development of a user speci�ed application is given in
Weaver et al. (2012):

This paper presents several case studies of rapidly implemented, audience-
speci�c applications (...) By tailoring each application to the audience
and the task at hand, the required learning curve for new users was
greatly reduced. Each case study used OpenStudio, the U.S. Depart-
ment of Energy's middleware software development kit. (...) OpenStudio
dramatically reduced the e�ort and risk required to develop the building
energy modeling applications described in the four case studies. (Weaver
et al., 2012)

2.5.4. Complexities in software development

Complexity can be seen as a negative term: Complexity understood as a mul-
titude of factors at play can make decisions become clouded. Complexities can pose
a threat to such a degree that some methodologies have even resorted to complexity
management (Ramsin and Paige, 2008).

..and a positive term: Since the true nature of the organizational and social
structures that an IT system should support is complex, then the uncovering of
these complexities should not cause failure, but rather be an opportunity to secure
the project's success.

In order to frame the discussion of complexities and reducing them, we should make
clear what we mean by reducing complexity. Naturally, we mean reducing those
complexities that cloud design decisions and add to unnecessary articulation work
and not the complexities that should be accounted for and play part in the design.

Some risks due to complexity are avoided by choosing co-realization or rapid de-
velopment. For instance, the risk of requirements not truly re�ecting a complex
environment or requirements becoming too complex to be managed, thus defeating
the purpose of using requirements speci�cations.

Software development is di�cult to manage if the requirements cannot
be fully and accurately de�ned at the beginning of a project or if the
requirements are so complex that changes are inevitable during develop-
ment. (McQuaid, 2001)

26

2.5 Risk

Researchers of CSCW have stated the need to incorporate social complexity into
CSCW design (Procter and Williams, 1996), but further explaining that this com-
plexity lead to a new complexity of the social interaction between end-users, systems
designers and implementors, which we will refer to as complexity in the design space
(see section 2.3.2):

In CSCW, the problem is not the complexity of the technology (though
it may well be complex), but complexity of the social interaction be-
tween end-users, systems designers and implementors (Greenbaum &
Kyng 1991). And one important reason for this complexity is that end-
users and designers don't inhabit the the same environment and share a
common practice. (Procter and Williams, 1996)

The parallel, I wish to draw here, is once again to co-realization, namely that since
CSCW researchers �nd the problem of complexity within the design space, they are
advocating what can be found Hartswood et al. (2002), stating that one important
reason for this complexity is that end-users and designers don't inhabit the the same
environment (Procter and Williams, 1996).

On a more universal level, methodologies and the discussion of when, why, and how
lead to all sorts of self-in�icted complexities in the research �eld (see Ramsin and
Paige, 2008). The problems caused by this are, to a practitioner, that the choice of
methodology becomes di�cult. To this case study in hand, it means that framing
the analysis becomes deadly critical.

Methodologies are inherently complex; even methodologists who try to
be scienti�c and professional in their approach to de�ning their processes
too often end up giving too little or too much detail at the wrong level.
(Ramsin and Paige, 2008)

Methodology complexities are very much also a reality in entrepreneurship research,
which we shall look at in the next section (section 2.6), and also caused by the
arguable necessity of including constructionist discourses:

Much of Entrepreneurship Theory development has assumed positivist
methodologies, but many of the models de�ed rigorous empirical testing
due to their complexity (for example Bygrave, 1995: 5). This prompted a
number of scholars to consider just how Entrepreneurship Theory might
be redirected. (...) Sociological approaches focus on structure and `agen-
tic' aspects of entrepreneurial behavior; this has led to consideration of
how signals from the environment may in�uence entrepreneurs' actions
(...) (Chell, 2007)

We leave the discussion of complexities in entrepreneurship theory, but it would
seem that an argument could be made on the same grounds as co-realization, for
instance that an entrepreneurship should design itself with the context that it wishes
to operate, and that's not very far from grasp, if it is a software entrepreneurship.

27

Chapter 2 Theory

2.6. Entrepreneurship

Introducing the generally business-minded research �eld of entrepreneurship is a
two-sided measure. On one hand, there are lessons to be included from this topic,
but more importantly, it helps to de�ne the scope of relevance to the outcome and
discussion of rapid application development, co-realization, and expanding design
spaces towards the �nal synthesis (see section 2.2).

Entrepreneurship � similar or identical to the likes of small-businesses, startups, and
software ventures � is a popular term, and it's argued by innovation economics that
entrepreneurship is a core part of the economic model. Over time, tools necessary to
create new inventions, products and business models have become cheaper and more
accessible and likewise, there has been an emergence of an organizational structure
targeted at new opportunities. Some see it as the second era, the one following
the dot-com burst. The Internet is hard not to mention, especially as it is key to
global markets, work-forces, knowledge, and software building blocks being at the
hands of a software entrepreneurship. Zutshi et al. (2006) have built upon preceding
theory on entrepreneurship with an objective of �nding attributes to characterize
e-entrepreneurship:

...E-entrepreneurship [is de�ned] as a concept which principally uses the
Internet to strategically and competitively achieve vision, business goals,
and objectives. (Zutshi et al., 2006)

The case study has many characteristics of an entrepreneurship, and especially of an
e-entrepreneurship. First of all, it is an online ticket sales system and thus requires
the Internet to exist and function, but moreover, the idea of having presales is a
core business goal and objective to the venues (see chapter 3). During the study,
many critical functions of the participating organizations turned out to be adjacent
to the ticket vending system, putting both risk and opportunity at stake.

Many of the assumptions and positive �ndings in the settings of RAD and co-
realization studies hold true in entrepreneurships. Shelly et al. (2011) states that
RAD is indeed suitable for those cases when new business functions are developed:

Because it is a dynamic, user-driven process, RAD is especially valuable
when a company needs an information system to support a new business
function. (Shelly et al., 2011)

The case study consists of a project that initially holds many unknowns and in a
normal economical setting would need a startup investment. In actuality, the project
participants have all risked their time (see section 3.1.5), and if the project had not
been a research project, they would have had to risk an economical investment. In
addition, the software product has been a highly open-minded process, rather than
a precisely modeled plan. The risks that are inherent from the nature of software
projects and more speci�cally the ones using rapid development are outlined in
section 2.5. One of the reasons to speci�cally distinguish e-entrepreneurship is that
of economical risks, ie. setup costs, are generally lower.

28

2.6 Entrepreneurship

Entrepreneurship and organizational structures

For an organization to label itself as an entrepreneurship, or rather for someone to
consider an organization as having entrepreneurship properties, there are a few nor-
mative results to draw from the literature. Properties which to an e-entrepreneurship
could be fueled by the development methodology that they choose. One of them is
the de�nition of dynamic capabilities, after a long a controversial discussion:

[T]he abilities to re-con�gure a �rm's resources and routines in the
manner envisioned and deemed appropriate by its principal decision
maker(s). (Zahra et al., 2006)

The view held by Zahra et al. (2006) is focused upon leadership and management,
which could be disjoint from the ideas of co-realization and rapid development if it
was to be understood as a methodology that weakens management control. However,
the de�nition actually could be an approach towards such methodology, as dynamic
capabilities asks for management and leadership to be capable of recon�guration, e.g.
to recon�gure from the changes that arise from a dynamic (rapid and participatory)
development methodology.

...from these de�nitions, it can be inferred that successful entrepreneurs
need to possess attributes such as vision, opportunity-seeking, leader-
ship, and management skills. (Zutshi et al., 2006)

Another argument strengthening the bond between rapid development and en-
trepreneurship organizations, is that of the adaption of the entrepreneurship to its
environment and stakeholders. Because such organizations are required to adapt to
survive, they should be able to exploit serendipity :

The exploitation of serendipity necessitates �exibility with regard to the
start-ups' existing product or service concepts, strategies and business
plans because in the serendipitous mode these are often re- and co-
designed with newly encountered stakeholders. (Tahvanainen and Stein-
ert, 2013)

The rather normative discussion of how an organizational structure should be in
order to successfully support entrepreneurship or innovation is not only relevant in
an economical sense. If we were to suggest that co-realization and rapid development
are essential to such environments, we should eventually account for what exactly we
mean by such. Given this idea of organizational structures supportive of change and
a speci�c practice of software development adds another layer of complexity to our
understanding of social and technological interplay. Not only should organizations
adapt and adapt to new IT systems, they should do the same to the development
of them!

29

Chapter 2 Theory

2.7. Case and research methods

The case study is very conventional in its overall structure: In the former sections of
this chapter, we have explored a theoretical synthesis bond between co-realization
and rapid development and now aim to explore its validity and add reality to our
theory through analysis of the outcome (see for instance Eisenhardt (1989) on build-
ing theories from case studies and using theoretical constructs during case research).
We use a few classic ethnomethods to inform software design while on the other hand
also informing the case research (recall the double-role of the researcher). Explaining
the methodology takes o� with a de�nition of the study as is :

Case 1. In the study, a software developer initiates a ticket sales cooperative com-
prised of two di�erent organizations, namely two music venues. The developer
participates in organizational decisions, interviews stake-holders, keeps a di-
ary, and conducts �eld observations. The software development takes place
continuously.

The reason for seeing the methodology as is, is due to the nature of the case � the
study does not a�ord any further observational resources, so I try to de�ne the case
methodology in a deliberate fashion with reference to item 1. As I've placed myself
as the IT facilitator (see section 2.3.3), we should take note of the bias present.
The outcome of my own participation is explained in section 3.1.7. Furthermore,
I'm also a stakeholder in terms of academic pursuits, but this behavior can be seen
as a convenient replacement for the fact that I'm not being paid or professionally
a�liated as would normally have been the case for an IT facilitator, i.e. in terms
of defending my development methods and not seeing my hard work go to waste, I
would naturally like to see case project succeed.

In order to gather inputs, the role of IT facilitator uses a free range of ethnomethod-
ology tools as deemed necessary and a�ordable. The tools are used in classic ethnog-
raphy to gain the observer a more natural role, in which he can conduct �eldwork
and make observations in natural surroundings. Many ethnographers argue that an
active role is necessary to gain real insights, the most extreme being perhaps the
�eld of Militant Ethnography (Juris (2007)) where an ethnographer adopts the same
views and sympathy of the subject group. As I have no other similar participants
subject of study, i.e. no other IT facilitators, it would be an exaggeration to hint
to such theories as Militant Ethnography. My position can be seen to unlock access
to the organization that I want to study, undertaking a naturalized role. But in
the case of understanding the software design and development process, the goal
is not as to reach an in-depth understanding, empathy, or even sympathy of other
participants, rather it is to re�ect upon and later reconstruct my own decisions. As
such, the extreme degrees of sympathy becomes a given, as long as I can truly re�ect
upon my own actions in the development process.

The case study resembles to two levels of ethnographic practice: Embedded within
the case's project itself, is the interest of gaining knowledge to guide the software

30

2.7 Case and research methods

design. This also includes ethnomethodology! Since I'm both facilitating the design
process and the succeeding study of the case itself, the embedded ethnographic
observations become input to both the process of the case study itself, and the
research.

Most of this section and its subsections are dedicated to theory on gathering ethno-
graphical insights for the design and development process, except the latter (section 2.7.5)
which touches upon the overall research methodology targeted at accounting for the
case study.

Ethnomethodology of software development The speci�c selection of tools and
methods is subject to the circumstances under which the project is carried out (see
Sanders et al. (2010) for a discussion on selecting such tools). Even though rapid
development may seek to direct design observations to materialize in application de-
velopment as directly as possible, the developer does not necessarily enter a con�ict
with such discourse by choosing a participatory approach, seeing that participation
is a consequence of co-realization. Rapid development can simply be seen as a factor
when choosing tools and methods. The framework of Sanders et al. (2010) presents 4
criteria dimensions for the purpose of choosing tools and techniques for participatory
development:

1) for probing participants, 2) for priming participants in order to im-
merse them in the domain of interest, 3) to get a better understanding of
their current experience or, 4) the generation of ideas or design concepts
for the future (Sanders et al., 2010)

When rapid development becomes a factor for choosing tools and techniques, it
directly relates to 3) and 4). Having a better idea of current experience is similar
to performing observation of how users act in the realm of the RAD cycle. The
generation of ideas or design concepts relates to the feedback from users during the
development cycle. 1) and 2) are more indirect consequences, for instance priming
participants would be necessary if they are not actively playing a part by providing
feedback.

2.7.1. Overview of activities

Table 2.2 is an outline of activities that the case study has adopted. The theoretical
reasons for choosing them will be elaborated in the succeeding sections. They are
not a conceptual or principal set of steps, but circumstantial elements of this project.

2.7.2. Project establishment

Before any practical work can be carried out on a software development project,
before the design can take place, however lightweight it may be, and before the range

31

Chapter 2 Theory

Activity Tools

Project establishment Meetings negotiating aims and expectations, project
plan, developing statutes

Application data model Development, management meeting, object-relational
diagram

Baseline application
implementation

Development, management meeting, improvisation

Ticket purchasing
module

Development, management meeting, real testing,
improvisation

Administration module Development, management meeting, real testing,
'being there'

Door check-in module Development, �eld observations, key personnel
interviews, development, real-life testing

Holistic re-iteration Development, real-life testing, meetings

Table 2.2.: Main activities and tools, by �development� is meant software design
programming.

of participants has been uncovered, an establishment process is inevitable, both in
theory and practice. Elaborating the project establishment we need to uncover how
detailed and structured it should be, and what tools in it should include. Kensing
(2003)'s principles outline a number factors that should be considered in project
establishment. It can be seen as encompassing a possibly binding negotiation of
basic goals and constraints of the project for instance visions of how the software
could be made and discussions of necessities (Kensing, 2003). It is suggested to
create a project charter to manifest those decisions. To leave room for opportunities
be explored later on in the process (see section 4.4.2), we need to locate a balance
such that the establishment of the project does not con�ne itself too much, ie. that
we do not make binding agreements that limit the scope of freedom to act upon
later �ndings.

The project establishment can also be an opportunity for management, users, and
IT professionals to brief each other on the organizational impacts that they are
willing to accept, their choices of ethnographic tools, creation of business models,
and negotiate the risks that they are willing to take.

Preceding processes of the project establishment may be intended or circumstantial,
but via our understanding of existence and size of design space (see section 2.3.2).
If the goal is to maximally extend the design space, then the implication may well
be that we should allocate as little design decisions in the establishment process as
possible.

32

2.7 Case and research methods

Establishing a project is not solely about preparing a design phase. There are other
issues that may need to be established or researched such as legal, economic, and
ethical aspects.

The case study aims to establish the basic objectives and terms of a cooperative,
partly the organization that would be contextual to the IT system, as well as the
already existing organizations that were entering the cooperative, including their
targets and policies. The formation of our cooperative has legal and economical
consequences, and being initialized from an external player (me), it requires an
initial e�ort of convincing stakeholders. We can refer to the establishment of the
entrepreneurship, part of the entrepreneurial process. And even though we do not
intend an in-depth analysis of the case's entrepreneurial process or business model,
we refer to the consensus that entrepreneurship does not exclusively bind itself to
exact economic goals, but values to an extend that there is a common agreement:

There does appear to be more of a consensus that `opportunity recog-
nition' is an entrepreneurial attribute (Gaglio, 1997, 2004; Hills, 1995;
Kirzner, 1979, 1985) as is the goal-oriented behavior that may be summed
up in the phrase the `creation of something (of value)'. Chell (2007)

Thus, when we talk of the establishment of a software entrepreneurship, our atten-
tion should be directed to the value that we are trying to create by use of the IT
system in an organizational context where it is supposed to integrate with overall
achievement of goals through a consensus of opportunity recognition.

2.7.3. Software development and sketching: A re�ective
process

In Software Development as Reality Construction (Floyd, 1992), two paradigms were
made subject of criticism, namely software production and software engineering, in
which the process of software engineering was viewed as a consequence of software
production. Floyd viewed software as a construction of reality, and the development
process was described with constructivist discourse. Her characterization sounded:

Software exhibits an extreme degree of complexity, this calling for equally
complex construction processes. It consists of a uniform, abstract build-
ing material, is therefore plastic and, in principle, of unlimited revis-
ability. It must be machine-processable, i.e. complete down to the last
detail, consistent and formally free from error. It is not amendable to
sensory perception and can therefore, in the last analysis, only be evalu-
ated once in use. It creates social contexts for human actions, which are
shaped by the technical properties of the product. (Floyd, 1992)

Floyd (1992)'s illustration of the complexity and construction of software urges that
we take careful note that the developer is constructing and expressing her version
of reality, in some cases subject to an agreed upon design, but thus still expressing

33

Chapter 2 Theory

a construction of something relative to its perception. What we should note in
regards to this construction process is that non-decisions are also expressed, for
instance because the developer is not aware of alternatives. In cognitive discourse,
we could also add that subconscious decisions are also at play. It highlights the role
of the IT facilitator, being a developer, having to convey a personal experience of
reality to programmatic artifacts.

What is important to this study, is the many parts of an application code base that
are never discussed, and parts which are never even used or tested because they
refer to theoretical cases of reality that have been constructed and expressed by the
developer. In this study, at least, with help from autoethnographic methods, we
can uncover the examples and come to grasp the signi�cance of these decisions seen
as a part of the design, though often unmentioned. To put it in another way, what
the developer decides to do without any prior design decision or even contradictory
to design decisions, is not a feature of the development methodologies found in this
study.

Another process of interest takes place while the developer is at work: Sketching.
Works on design processes promote sketching and other means of expression through
materialization or creation of new artifacts to further a design process. Sketching
makes exploration and sharing of ideas easily a�ordable, and however more a�ord-
able rapid software creation becomes, the better access is gained to sketching. The
sketching process can take place between the software developer and the artifacts
that are given life through creation of new application structures, but it might as
well be seen between the artifacts and the users, subject to how the artifacts are
communicated. A rapidly implemented artifact may both be a true function of the
application and a sketch, however suits the view (see section 4.4.4). The process of
sketching is highly related to Kensing (2003)'s principle of anchoring visions, how-
ever they assume almost opposite aims, since the aim of sketching is to introduce
design change, while the aim of anchoring in PD has more to do with manifesting
and �xing design decisions in order to make them visible to key participants.

This subject could be expanded forever, but what is important to notice is that
whatever the impact on software methodology, the developer will be performing
an active role that speci�cally expresses itself as a reality construction through
programming code. The interesting role of the developer is not only pertaining the
construction of reality in software code, but also the idea generation that happens
at the stages of development, namely that the developer possesses a unique insight:

Developers who are personally more innovative with respect to informa-
tion technology and have greater exposure to OO technology are inclined
to respond to RAD with more alacrity. These individuals can serve as
key change agents in di�using the technology more widely. (Agarwal
et al., 2000)

34

2.7 Case and research methods

2.7.4. Case study methods

During the case study, the developer will be engaged in a number of processes which
shape to be either direct �eld work such as interviews and observations or indirect
�eld work such as meetings and screenings (showing something on the screen). To
the extend of the convenience in which the developer is situated, he can choose and
combine di�erent �eld work tools as needed.

All �eld work is performed in order to aid the development process. To reduce the
costs, the developer, being just a single developer, can reduce work by sketching
results in the programming code base instantly, or more speci�cally: Keeping the
�eld work within the RAD cycle of user design

→←construction.

The following tools and techniques are included, with no particular reference to
preliminary works. Since these methods are not fully understood, we should describe
their impact in the order of a thick description (Geertz, 1973).

Unstructured interviews: To gain insights prior to development, the developer can
observe and inquire into the work performed by users of interest. Context is
very important as it gains the developer more insights and inspires the in-
terview situation. Interviews should be unstructured and open, because the
developer has little knowledge of the work domains, but the more prior knowl-
edge, the developer has, the more direction can be included in the interview.
As the software progresses and can be made usable, testable or otherwise visi-
ble to the user, the developer can ask for speci�c input while the user is trying
or using the software. Kensing (2003)'s principle of anchoring visions can be
well-tested by anchoring what the developer perceives as a decision in software
and a�rm this anchoring through processes of interviews.

Observations: Participant observation can take place by watching users using the
old IT system, a development version of the new IT system � or perhaps no IT
system at all. To the developer, this can hold various values, either to explore
or suggest speci�c design, or to make a quick improvement in development.
Having the developer observe users at work is key to co-realization.

Being there: Another thing that's key to co-realization, is the basic principle of
being there. It needs to be included as a technique, because the choice may in
some cases arise when the develop for some reason is not being there.

Meetings: Making decisions visible and take place with consensus of a�ected users
and management is often necessary in the design process. Meetings can also
serve as a screening space, i.e. for the developer to showcase system changes
since last meeting and gain feedback. Some methodologies such as SCRUM
seek to structure meetings with regards to frequency and participants. Co-
realization ad Hartswood et al. (2002) does not target meetings as a speci�c
method, but it is inherent that the IT facilitation has to participate.

Real testing: Testing can mean many things, and the study makes use of isolated
testing of functions. But it also seeks a coherent and holistic test scenario,

35

Chapter 2 Theory

which is why we establish a real test of a new IT system by preempting cases
where the system can fail, and making everyone aware that the system is being
tested for the purpose of improving the design. Thus still using the system for
real, normal purposes.

Regular contact: Regular contact means that the developer and users do not have
to go through repetitions of previous processes due to loss of information.

Improvisation: Being able to quickly respond to new situations by introducing new
problems, new application functions is one aspect of improvisation. Another
could be the spontaneous deployment of other tools and techniques when a
sudden opportunity arises. The term �improvisations� can unlock a range of
easily a�ordable unplanned design and development decisions.

2.7.5. Research methods

Since I'm the research ethnographer and participate in organizational work and IT
facilitation whilst also doing research, the observational work aimed at research will
be limited.

The extra observation and diary keeping done for research purposes can also have
an e�ect on project case work itself, though. Either because it results in extra work
and observations being done, or because it adds bias to the regular case �eldwork,
for instance such that observations are directed at the ones that seem interesting to
research.

In this case study, as the developer is also the researcher, it is important that the
process is documented in a diary and re�ected upon. Furthermore, as all develop-
ment is carried out with speci�c development tools, it is possible to use those for
retrospective analysis (Krogstie and Divitini, 2010).

The objective of this paper is to investigate the potential to support
project teams' retrospective re�ection by the use of historical data in
lightweight collaboration tools. (Krogstie and Divitini, 2010)

Since I'm just a single developer, the notion of collaborative becomes an exaggera-
tion, however the idea remains that historical data collected by a revision control
system can aid the information from diaries in a retrospective analysis. Similar to
the study of Krogstie and Divitini (2010), we use emails and changes to the software
code base to recall and re�ection, aiding the reconstruction of the project trajectory.

2.8. Summary

Firstly, in this background chapter, I have laid out the synthesis de�nition. In order
to support it, I have listed a number of related studies, mainly nourishing the on-
going discussion of software design and development methodology. The aim has been

36

2.8 Summary

to fuel the understanding of software design and development as a sociotechnological
practice, and as a consequence why development methodology should make use of
ethnomethods, co-realization, and how rapid development can achieve this.

Finally, I have listed a number of loosely de�ned methods for the case study and
research. They are an honest re�ection of what has been practiced during the case
study, and as a result the outcome chapter gives further insights to the course of
events, and does not claim a perfect understanding of its methods.

37

3. Outcome

This chapter explores the empirical outcome of the case study, namely the process
of developing a cooperative consisting of two music venues. The primary respon-
sibilities of the cooperative are to develop, own, and run an online, digital ticket
sales system. This cooperation will be referred to as the ticket coop in the following.
The IT facilitator and researcher, i.e. the author, are essential in this development
process and, as such, I will share the autoethnographic observations that I have
found to be key insights for the case study. To quickly establish an understanding
of the kind of software developed, Figure 3.1 shows a screen shot of one of many
functionalities in the web application.

The chapter is divided in two main parts. Firstly, I describe the case as it happened.
This includes key events, decisions, participants, environment, and how the rapid
development process progressed. The case is described in chronological order and as
situated as could be reconstructed. This does not entail all events being described
with the same level of detail, but it is intended to give a clear understanding of the
process in a similar fashion as an ethnographic story. Whenever there is uncertainty
or processes hidden from my knowledge, I try to make sure that it is clear.

Secondly, I unfold more technical details about the programmatic design, develop-
ment process, software libraries, and technologies. This is with a special focus of
course given to the rapid nature of the development. All of these are technologies
that I was familiar with before the study, and which has given me the experience
required to assume the role of IT facilitator.

3.1. Case study: Organizations, environment,

decisions

The story given in this section describes the process of forming the ticket coop.
The story takes place between the initial phases starting from November 2012 and
leads to the actual system being run for the �rst time in April 2013. The story
has been captured through written diaries, meeting minutes and personal accounts.
The ticket system itself has been �nalized over this period. However, due to pre-
cautious behavior from the cooperative partners and overall slow decision making,
the statutes of the coop have not been �nalized. Thus, the coop itself concluded as
a work-in-progress, but with a good sense of the �nal actions necessary.

39

Chapter 3 Outcome

Figure 3.1.: A screenshot of one of the venue management screens. Data is �ctive
and the name of the ticket coop is tentative. Almost every aspect of this screenshot
has been subject to discussion and nothing has been developed with the aid of
design artifacts. All functions in the screenshot were fully implemented and tested.
For more on application functions, refer to sectionB.2, the screenshot pictures the
Event list of the Management Backend.

The focus of the stories is both to gather a few insights on the project itself and,
just as much, to document the results and insights from being a developer on board
every aspect of an organization � in aspects of strategy, management, work-life and
organization. In other words, I try to tell the story with a speci�c goal of highlighting
what I have found relevant to risky and rapid design spaces, both of negative and
positive nature.

3.1.1. Project establishment

The origin of the ticket coop came from my own initiative (see section 3.1.7 about
my own role). The functionalities of a ticket system are, however, heavily inspired
by the multitudes of similar platforms1.

1Before the coop started, we did not encounter any similar organizations, but during the process,
a ticket coop for theaters was curiously enough established and launched.

40

3.1 Case study: Organizations, environment, decisions

Personally, I saw the ticket coop as an opportunity to start a project from scratch
with a complicated and unknown context and environment. This also meant that I
was taking an initiative that I would have to share with someone in order to really
have a case study with participants (more on this in section 3.1.5).

3.1.1.1. Formation of the Ticket Coop

Figure 3.2.: Cooperative components and tasks proposed in the initial project draft

From the beginning, this project was to be a cooperation, a shared ownership of a
ticket system. The idea was sketched out in an 8-page project description (see also
sectionA.2). It was emailed to three di�erent smaller Copenhagen music venues,
attached with an optimistic email text. The venues were fairly similar in size, had a
non-commercial culture and featured lesser known musical acts and low ticket prices.
I invited to a meeting and two of the three venues responded with some interest.

I wrote the project description with the aim of capturing the interest of relevant
music venues. It was not a technical description of the ticket system, a system de-
sign nor a project plan. A ticket system would have to be developed if they were
interested. The project plan had a level of detail in areas of economy, technology
and organization. The project description suggested that a lesson should be learned
from the never-decreasing high fees of commercial ticket vendors which had made it
di�cult to o�er ticket pre-sales on less lucrative shows, as low ticket prices meant
a disproportion between the actual contribution to the musicians+venue and the
third-party ticket system owner. The sizes of current ticket fees were also deemed
unreasonable, since the function of a ticket system seemed within reach of a single
developer acting on the knowledge of venues. Sharing a belief that we could create
our own ticket system and acting upon it could thus as a �nal outcome liberate
the venues from commercial ticket vendors, and at the same time create a digital
system adapted closely to their needs. This refers to the establishment of the en-
trepreneurship and the sharing of opportunity recognition (see section 2.7.2). The

41

Chapter 3 Outcome

level of practical detail revealed components and tasks of the cooperative. Summa-
rized (see Figure 3.2), they could be split into 3 components of shared ownership and
development and 3 components of tasks to be undertaken by cooperative members.

More speci�cally, the project description proposed that the venues should share the
costs of maintaining a ticket system, and that these costs would be signi�cantly
lower than a third-party ticket vendor. The two basic costs of the system would be
the payment gateway2 provided by a typical payment broker (there are many!) and
the renting of a cloud server. It also emphasized the possibilities of co-developing
an IT system to target the speci�c needs of the venues, and that there could be
room for improvements through the devotion of the development methodology of
the study.

Initially, the project description contained arguments about the prospects of tar-
geted design and cooperation, but also complained that the current level of fees was
unreasonable. It outlined economical �gures, arguing that ticket fees could be as
low as 1/10th of the current standard. The project description also argued that a
ticket system should in principle be owned and operated by the venues themselves
and seen as a core functionality. However, my own arguments were not the same as
the venue's representative daily managers: 2 of 3 venues joined in, but they all had
di�erent sets of arguments:

Venue A wanted to join the project because it was non-pro�t and in the spirit of
the venue itself, i.e., being run by volunteers and not for pro�t. The venue
was very interested in cooperating with the other venues and saw this as a
bene�t and possibility. Venue A already has ticket sales provided by a third-
party provider, which had found a way to provide sales without direct fees,
but pro�ted by printing commercials on tickets and possibly by returns from
banking revenues. Venue A is non-pro�t run by volunteers.

Venue B already has presales for most of their shows, but each presale is done
through an expensive vendor, which makes it unattractive to smaller and
cheaper shows. Hence there was almost never presales on smaller shows. Venue
B would like to try a system with little or no fees and is open to cooperate
with Venue A. Venue B is non-pro�t and run by volunteers.

Venue C already has a presales solution, although it is twice as expensive as the
solution proposed in the cooperative. The venue does not believe that a new
ticket system can bene�t them enough to change the current system. The
venue is generally running well and they are not very desperate for change. The
venue is not interested in attending the meetings. At a later informal meeting,
a manager, when informed on progress of the project and the support gathered
from the other venues, noted that �money talks� about their own interested in
joining. The statement does not necessarily relate to any money made or lost

2A subscription to a third-party provider of secure online payment, price of which could easily
impact the goal of no-fee ticket sales

42

3.1 Case study: Organizations, environment, decisions

from ticket vending, but rather re�ects that time spent by the management
on non-essential projects can be costly. Venue C is privately owned.

The project started at the end of November 2012 with the �rst meeting with the
managers of Venue A and B. Afterwards, work was cut out for investigating funda-
mental parts of the coop: The statutes, the economy, and legal issues.

Similarities between Venue A and B: Both Venue A and Venue B are
music venues with the sole purpose of hosting show nights. They concentrate
mainly on underground music with audiences of up to 230 and 400, the music
genre being for instance alternative rock, punk, metal, reggae. Both venues
are almost exactly the same age, formed some 40 years ago. The di�erence,
however, being that Venue A recently went bankrupt and was reopened with a
new, more professional management, but on the premises of most functions being
handled by volunteers. This is almost identical with Venue B's setup, except
that Venue B's volunteer platform and vibrant structure contains individuals
with experience reaching back to past decades, thus being signi�cantly more
established.

3.1.2. Participants

Before turning to the summary of events, here are the people who were key par-
ticipants in the study. Participant 'D' and 'G' were by far the most in�uential to
the project. Other participants mentioned made important contributions during
the process. Participants who were only present at a few informal occasions are not
included.

43

Chapter 3 Outcome

Participant Role

'D' Venue A 'D' restarted the venue from after its
collapse and bankruptcy 5 years ago. 'D' is
full-time daily manager with tasks like o�ce
work, economy, volunteer coordination

'E' Venue A 'E' is part-time manager, working at the
o�ce with promotion, volunteer
coordination, �oor management. 'E' is a
professional event manager with several
years of experience

'F' Venue A 'F' is �oor manager and the venue's main
booker. 'F' works on volunteer-basis. 'F' is
probably the most regular volunteer in daily
activities.

'G' Venue B 'G' started at Venue B after the ticket coop
project had started. One of 'G's �rst tasks
was was to be regular contact and meet-up
person for the project.

'H' Venue B With around 20 years of experience as daily
manager and booker at Venue B, 'H' was
perhaps the most experienced and
professional individual in the project and
participated closely in the beginning, but
then gave over initiative to 'G'.

'J' Venue B 'J' did accounts, statistics, and daily
planning. Saw an early possibility to give
input to the backend management of the IT
system.

me IT Facilitator see section 3.1.7

44

3.1 Case study: Organizations, environment, decisions

3.1.3. Time line

App. time Activity Description

November 5 Meeting Project description presented and discussed
November 30 Meeting Establishing project, statutes draft
December-January Emails Discussing statutes, stalled
February Development Data model drafted, core system explained
February 12 Meeting Discussing data model, project

establishment. Consensus on splitting all
coop costs equally.

February Development Ticket purchase
February 26 Meeting Discussing purchase phase and next phase,

project plan, deadlines
February Development Management backend, smaller meetings
March 12 Meeting Meeting with 'G', discussed and reviewed

some administrational functions. Venue B
wants to drop coop payment gateway.

March Development Several days of development at both venues,
complexities have been uncovered

March Development Switched to contextual development,
di�cult decisions made easy by sit-down
session with the live development system.

March 22 Development Test data added
March 28 Deployment Participants are given user logins to

development server
March+April Interviews During contextual development met many

of the volunteers
April 3 Development Starting to develop door screen
April 6 Observations Gathered observations speci�cally targeted

at door screen
April 11 Re�ection After several attempts decides that email

communication cannot be used to gather
feedback

April 15 First RAD cycle Setting up �rst event for sale in the ticket
system. Ticket sales kick o�.

April 17 Live testing Full test
April 18 Live testing Testing doors and guest lists, even rock

stars have used the system now
April 19 Part-conclusion Development has been halted, most aspects

of the system has been tested, except online
payment.

Another way to express the progress of the project comes from observing the de-
velopment of the software itself measured as lines of code (see Figure 3.3). From

45

Chapter 3 Outcome

this perspective and from my own experience, the project became very active and
productivity rose once I started working in a contextual environment during the end
of March. Normally, pace would decrease as a result of testing and feature stability,
however the ever-increasing development in the code base size expresses that the
project was cut short at a stage of high productivity. The method of post-analyzing
the project from commits to a version control system could have been much better
supported and used, though, and thus the graph lacks data points.

Figure 3.3.: Development of the code base as a function of time. The �nal count
read 10,723 lines, excluding over 70,000 lines of code included from third-party
open source projects, and additionally hundreds of thousands lines from frame-
works etc.

3.1.4. Nature of the Cooperation

The following section gives an overview of the sense of cooperation that was estab-
lished and the processes are elaborated in section 3.1.9.3. The study has not targeted
an understanding of how music venues work, nor did the project seek to draw any
preliminary work on similarities between participants and the nature of their ten-
tative cooperation, it was simply assumed that the known similarities between the
venues would exist at a practical level. However, out of necessity, such insights have
occurred in the particular cases of the venues participating in the ticket coop as it
established itself. There was no plan of how the coop should function before the es-
tablishment or during the development, but having the two venues cooperate seemed
natural, because of their organizational similarities, music genre and audience.

46

3.1 Case study: Organizations, environment, decisions

At the end of the project, both parties had engaged in both common decision-making
with mutual understanding, and as such, the coop was cooperating � even though
it was not �nally constituted.

The sta� at both Venue A and B largely consists of volunteers, except for sound
engineers and some of the door sta� who on the other hand also participate as
volunteers. The managements are professional and have very hectic daily routines,
mainly o�ce routines such as coordinating schedules, doing promotion work, vol-
unteer shifts, socializing with volunteers, music booking, and managing inventory.
Both venues have a full time head of management and a couple of part-time roles
that also supplement the management on a professional level. Furthermore, both
venues receive cultural bene�ts, requiring that the professional management satisfy
a number of terms, most of which did not directly a�ect the ticket coop. For in-
stance, both venues are headed by a board, membership constitutions, subject to
general assemblies, professional accounts keeping, and documentation of activities.

Both venues are fairly accustomed to online technology, since music booking has
been shifting towards this for a long time. Communication with touring bands and
their management, promoters and touring agencies is mostly done by email, and
the booking of touring acts, local support bands, DJs etc. is highly dependent on
a digital and shared calendar. Not to mention that promotion is heavily dependent
on social media.

There is a mutual interest in the cooperation, and meetings have resulted in an
exchange of experience that went beyond the scope of a ticket coop. The venues
acknowledge that they are in some ways competing for the same market, but the
number of audiences to be choosing between a show at Venue A or B is always
likely to be low. So rather than keeping secrets from each other, they prefer sharing
experiences and goals, and the forum created by the ticket coop is valued in itself.

The cooperative mindset has been established over time. During the �rst meeting,
I was regarded as a third-party, and the project was my own. One way that this
played out was the mentioning of �your project�, �our [Venue A] needs� etc. which
slowly but not entirely changed to �our project� and emphasis on common interests
such as advertisement of the other venue's shows.

Disintegration of cooperative interests was strongly linked with perceived risks of
criminal or grave misunderstandings arising from the initial project description:
Mis-management of a shared bank account, from which all ticket revenue would be
stored, and channeled to the individual venues by some management �gure. Since
presale revenues are of a considerable sum, it was not an intuitive decision to have one
venue to manage the other venue's revenue, given the slightest feeling of competitive
nature.

By the time we had reached the second meeting of February, enough talk and perhaps
trust had been build for the manager at Venue A to make a fundamental suggestion
in the light of the cooperation: To share the costs of the coop instead of estimating
and accounting complicated fees on every ticket transaction. This was immediately

47

Chapter 3 Outcome

acknowledged by the representative of Venue B who had in the meantime been
assigned the responsibility of the coop project. The outcome of the second meeting
meant for the cooperation, that both time and e�ort had been vested in the project,
and a more cooperative nature was established, i.e. that trust and solidarity should
outweigh and give advantages over the complicated nature of tracking the usage of
common resources.

3.1.5. Risks

To describe the risky nature of the project, we observer its risks at two connected and
continuous levels: On the higher level are the risks as perceived by the participants,
hence their commitment to the project. As mentioned earlier in section 3.1.1 the
existence of such risks also supported that the case study itself had taken on a
realistic nature. The other level is gradually more embedded in the project as
software development risks. Ultimately, these are the risks of failure to deliver a
successful IT system with some given measure. A mashup of the risks can be seen
in Figure 3.4.

In the early stages of the project, the risk which was sensed and later con�rmed
through a debrie�ng, had to do with the nature of the study: Student project (see
also section 3.1.9.2). No money was being spent and the costs had to do with time.
During a phone conversation in January, I was prompted by a participant that the
time schedule of the project was too tight, and from the participant's point of view,
that my thesis plans were the true reason. Similar incidents happened throughout
the project, in which the participants operated with a radically di�erent time frame
from my own, and I felt I had to over-step a border to bring about enough action to
avoid collapse of the project. Typical suggestions were �after summer�, �at the next
board meeting� etc. On February 21, my diary concluded:

This project is only happening still because I'm pushing through. Had I
been relying on the initiative of the venues, nothing would have happened
at this point. (Diary, February 21)

What I did not know at that time, was that things would get slightly better and
support would increase as the system started being developed. Results, observations,
and meetings were still possible as long as the intentions did not include statutes
and legal decisions.

During a meeting at the very early stages of development, we went through the
perceived risks of creating and having a ticket coop. At this point in time, the
nature of the perceived risks had become more speci�c and targeted at the software:

• Errors in the payment gateway, as the venues were familiar with the heavy
cost of credit card terminals in the bar not working

• Hackers breaking into the system and stealing information

• Flooding of server capacity, e.g. from popular shows

48

3.1 Case study: Organizations, environment, decisions

Figure 3.4.: Several risks were perceived by participants and brought up during
development meetings. Risks are shown here to illustrate that there is some space
which de�nes the riskiness of the project overall, and that the risks contained are
related by de�nition or implication (hence the overlap between elements). For
instance, hackers could pose a risk, which could cause downtime � but they could
also pose some other unknown risk, which the participants did not know of, they
merely sensed it. The risks include both the IT system and the ticket coop.

• Errors caused by system updates

• Errors from speci�c browsers

• Other errors - ie. the risk of unknowns, inadequate system functionalities,
human errors etc.

• Single person maintenance, single point of failure, lack of backup

Furthermore, the initial establishment meetings in November showed a particular
worry about the common administration practice of coop ticket sales. As funda-
mental parts of the system were developed, namely the ability to generate tickets,
purchase them in an online setting, and administrating the tickets and revenues, the
discussion of risks became more grounded. This paved the way for the participants
and facilitation to give more decisive statements and look for solutions that could
be measured.

49

Chapter 3 Outcome

Participant 'D' stated that from assessing the costs of downtime, they were willing
to go as far as paying for a reliable service provider to ensure the uptime of the
system. This was especially because I was the only system maintainer taking part,
and 'D' wanted that as much money as were risked on system downtime should also
be spent on preempting it.

Perceptions of risks were guided by a sense of what threat it actually posed to the
venues, and facilitation was made easy by managers being very proactive about
raising issues and explaining consequences posed to their own organizations. For
instance, the discussions yielded a necessity for backup procedures as both venues
could be prone to internet outage (as experienced before), and the system would
only work when online. In case of a popular night being hit by system faults or
internet outage, tickets would not be scanned, and entries could not be registered,
and the venue would risk a faulty door entry process causing delays. In cases where
presales could not be properly processed and managed, this would in�uence the cash
sales negatively, and possibly postpone concerts, prompting both immediate harm
to the venue and damage to its reputation.

As a strange and paranoid conclusion to the February 12th meeting's discussion of
particular risks, the manager of Venue A reassured that their concerns of system
failure were actually not particularly strong. The statement indicated that the
participant's perception of the risks were subject to change. Not from concrete
factual grounds, but as an outcome of meeting room discussions, atmosphere, and
intuitive reassurances.

3.1.6. Finding solutions to risks within the meeting space

Not all risks were laid aside for later analysis or good fortune. During the discus-
sions, we sought ideas of how technology could practically lower risks or produce
viable solutions. As IT facilitator, knowing the tools, and having theorized the spe-
ci�c data model of our system, made it easy to name realistic solutions within the
meeting space, rather than reacting to issues raised by participants by setting up
new investigative processes.

System and internet outages

One example of solution �nding within the meeting space, was an issue raised at
a meeting with managers from both venues. The need for a backup system for
handling either internet outage or other system failure was discussed. The ideas
for handling it felt short at the problem of internet outage, as this would cut o�
any redundant online backup systems. Instead, we agreed that a backup copy of
tickets should be mailed and kept on a separate server. Since paper lists of ticket
holders could possibly be kept in the door for other purposes, such as guests who had
forgotten their tickets, I did my part as IT facilitator and suggested that the overlap

50

3.1 Case study: Organizations, environment, decisions

Figure 3.5.: Ticket lists as PDF. Each ticket has one row in the table, �rstly the
necessity of the list was discussed at a meeting, then the list was made, and �nally
the format and the contents were debated once while looking at the PDF itself.

and these interests called for a functionality of generating PDF lists of ticket sales
containing information of ticket holders and barcodes (see Figure 3.5). At the next
meeting, I presented the ticket lists generated by an added feature in the system.
We reviewed the ticket list and found that it could conveniently be marked with a
pen and scanned using normal procedures once the system was back up, also on the
day after. The PDF �le was easy to both email and upload to an external backup
server. Once deployed, the perceived process of a backup system would be able to
either stand the test or be adapted. Furthermore, the risk posed by developing this
solution was proven low, due to the fact that it was implemented in just a few hours
(see also 3.2.2), which I sensed already at the meeting from knowing a tool to easily
generate and structure dynamic PDF documents.

Hackers and sensitive data

As stated from the February 12 meeting, Both participants from Venue A and B
were concerned with the likes of hackers breaking into the system, which prompted
a discussion on what kinds of data we would be handling. Thereby, we knew that
even though the system might not be a lucrative target for hackers, it would still
be necessary to maintain passwords properly hashed and not to include any sort
of APIs that could pose a risk of �nancial theft. Facilitating this part was more

51

Chapter 3 Outcome

di�cult for me, as I am not a computer security expert. From the data models, and
from using external payment providers, we could jointly establish a conclusion that
the information contained within the system was at least not prone to data theft.
The same discussion also lead us to talk about permissions and roles in the system,
ie. that ticket sales could in theory be sensitive data, for instance to cause someone
to wrongly perceive their cut of entry sales.

After the discussion of hackers and data sensitivity, I decided to spend time imple-
menting a developer-wise easy, self-contained API for securely handling permissions
and authentication throughout the system, and even though this should be stan-
dard practice, the discussion of user permissions helped to guide the level of detail
contained in the permission handling and to make it an early feature.

Sharing the coop revenues

Perhaps the risk that was hardest to grasp was the risk posed by the coop's handling
of common funds, known as the administrative role. It related to the handling
an transfer of �nancial assets on the coop's bank account, and the initial project
description had naively stated that such a role would easily be dealt with by a couple
of sta� hours every month, time-shared by the coop's member venues. To the point
of constructively dealing with the issue, I introduced several measures early on after
sensing that the members were raising the issue almost at every occasion possible,
especially in light of the coop ideally being open to new venue members. Firstly,
I assured that all system data linked to calculation of revenue was calibrated with
events such as price changes, ticket refunds, data deletion and such. Data would be
kept safe through lower level process signal that would be �red at every occasion,
essentially being the core business logic of the system remaining intact and topped of
with revision handling of every object (e.g. ticket) in the database. I demonstrated
the implications of these signals by showing participants at a meeting how even
changes done by myself in the backend were captured by this mechanism.

Finally, together with managers from both venues, I reviewed how to deal with
cooperative funds on the screen. At this stage, there was no bank account and no
funds to handle, so we simply went through the process of buying a ticket, and
tracing the added revenue to the screen on which revenue was summed up. The
screen had only one button to indicate that action had been taken to transfer this
revenue to the respective venue. Thus, there were no manual actions to sum up
revenue, and we noted how additionally generated venue after the transfer would be
counted in a new revenue stream. We discussed that the on-screen feedback should
bring up an additional con�rmation step, which was included, and the discussion
enlightened me to bring about an extra check on amounts being marked transfered in
case of concurrent ticket sales in order to avoid the complex situation of a concurrent
ticket sale messing up an on account transfer.

52

3.1 Case study: Organizations, environment, decisions

Figure 3.6.: Management screen for revenue administration. Curiously, this screen
almost never changed, but the intended functionality of the screen was adapted
from managing a single venue's revenue to being the accountants tool at each
venue.

3.1.7. Ethnographic bias and IT facilitation

The following section is meant to capture a few observation on my double-role as
IT facilitator and researcher. From my diary, it is obvious to see that it does not
simply lay out observations of events and environments. Instead, it has functioned
more as a daily re�ection space, and to gather sparse notes for later reconstruction
of events. This has made it easier to re�ect on my bias throughout the process at a
point in time when emotions and attitudes are hard to recall.

Bias

As a developer and professional, I have worked on web related software projects
for a decade. I almost exclusively worked through informal hierarchies and mainly
with contextual development. The work that I have done for the past years has
especially been with rapid web frameworks (?) and database-driven applications,
and because of that I started out from a position that the software should be an
online application, running from a platform that I already knew the qualities of.

From my own experience, I wanted the data model to be the starting point of

53

Chapter 3 Outcome

development, because I have experienced the consequences of changing a data model
later in the process. Changing the data model can result in much refactoring of code
and as a concequence introduce many new errors.

The origins of the ticket coop came from my own initiative: I found it to be a
convenient combination of interests (music, programming, volunteer organizations)
and that it would be worth testing my new motto �source code should be free,
and systems should be cooperative�. I wanted to experience disjoint organizations
cooperating on their IT with open source as an enabler, and to follow a familiar
development process with a deliberate and introspective cause.

Brie�y put, the idea of the coop had been conceived by wanting to engage in a
structured and carefully noted process of doing rapid development, which I saw as
a basic requirement for this sort of cooperative. Costs would have to be kept low,
and rapid development was my answer to this problems. I wanted to formalize and
study what I had previously been doing, to get socially considerate applications
created and running with little bureaucracy and costs, and out of what I honestly
have to say is a despise of contracts, planning and software with too little concern of
actual needs, and a fear that incentives from third-party development often served
to complicate and generate orders rather than target and serve customer needs and
progress upon open platforms. I wanted to develop software while having full access
to its context and have people feedback directly, enabling the kind of rapid change
that I miss whenever organizational hierarchies would cut o� direct to design-critical
information.

Developer's diary

One of the intentions of keeping a diary (see section 2.7) was to maintain auto-
ethnographic insights on the development process to retrospectively guide the sto-
rytelling on how the development took place.

After development took o�, I worked both from home, and later at the venues
themselves. It was not always possible to get hold of participants, namely the man-
agement at the venues, since they were busy. Much of the functionality especially at
early stages was fairly �xed, so I could manage to work for up to several days before
meeting to discuss results. Often, we would also talk on the phone and communicate
by email, but those communication methods never became dominant.

The diary was not always well-maintained, as I experienced a limit to my own
resources. It was slowly improvised towards a level of observation and re�ection
that suited my work habits, and I had to learn to take notes before the point of
forgetfulness. Often, I worked until I was too tired to write a meaningful diary
entry. One entry read:

The last two days, I should have written a diary entry, but I was too
caught up coding (Diary, March 6).

54

3.1 Case study: Organizations, environment, decisions

Some of the personal re�ection on the process also had to do with frustration of
lacking results from participants, especially on the work of drafting statutes (see
section 3.1.9.3). I �nd that from reconstructing the process, that such entries have
been especially bene�cial and during the process itself, they have served as an emo-
tional vent that becomes necessary when the work is lonesome.

3.1.8. Planning the project

In order to �nish the project within a time frame and to have common aims, man-
agers of both venues agreed on a project plan in February (see sectionA.1). The
plan spanned roughly two months of development with 6 targeted milestones. The
�nal aim was to be able to test the full system at the beginning of April. Total time
allocated for development would be roughly three months including the time before
the project plan was conceived.

The necessity of a time plan was brought up by 'G' who wanted a clearer view
on deadlines for clearing and completing the statutes with his own board. 'D'
acknowledged the schedule without any particular aims, except for the venue's own
general assembly and board meetings setting the course for some of the activities,
such as aiming for a completion of statutes or aspects of the system to be presented
to the board at future meetings. In the end, 'D' o�ered that the venue could host
a night for testing the system with full support of all the sta�, a date that would
have to be set according to the venue's concerts.

The project plan was created from my own understanding that the system would
most likely be chunked in the following modules, not system modules with some API
between them, but loosely coupled components in the sense of user roles, test cases,
and data models:

Ticket purchase: This module would require the basic data models to be com-
pleted, e.g. Event, Ticket, Venue, Revenue etc. We did already anticipate
that certain management functions such as refunding/canceling/changing tick-
ets and changing ticket sales or supporting di�erent sales for the same event
would have to be supported at later steps.

Management backend: Logged in managers should be able to monitor ticket sales,
create events, add ticket sales, create new user accounts, refund tickets, cancel
shows.

Door check-in: Finally, we assumed that the check-in screen would have to be
created through an entirely di�erent interface for support quick and simple
ticket scanning and sales.

55

Chapter 3 Outcome

3.1.9. Moving towards design-in-use

In this section I present the process and obstacles of arriving at a development phase
that allowed design-in-use.

3.1.9.1. Using data models

Figure 3.7.: A sub-set of the models,
but perhaps the most unintuitive set
of relations: Rather than a ticket be-
ing for an event, a ticket is related to
an o�er, that is for a speci�c event.
The o�er is based on a prototype
(prototype for instance being �nor-
mal presales� or �2 person ticket�.).

Modeling data types correctly is important
to application development, especially if it
happens in an object oriented language and
even more so, when it relies on database
functionality. To a developer, it is therefore
desirable to have the database planned at
an early stage, but to a system designer, a
�xed database schema can be a constraint
(see also section 2.4.1).

The usage of an object relational mapping
(ORM) framework, gave the opportunity
to create real application models imme-
diately and automatically transferable to
both diagrams for easy visualization and to
the database schema. A further discussion
is presented in section 3.2.2.

After the preliminary meetings concern-
ing the project description document and
statutes, I had gathered enough insights to
lay out the foundation of the system. The
input for the data models were both issues
stressed by the venue management (such
as show cancellations, system permissions,
ease of use, revenue calculations, and on
account cash-outs) and functionalities of the three system components from the
project description. Since these contents had not been contested at the meetings, I
felt con�dent enough to start developing models for the application.

The initial draft of the model (see sectionB.1) was presented at a meeting, and we
ran through all of the model �elds, discussing their relevance and adding a few new
�elds such as phone number (venues may provide the service of calling ticket holders
in case of sudden cancellations). In the diary, I stated:

Explaining the data model went �ne. Everyone seemed to understand
clearly the foundation of data, and the questions I put forward were
answered with a common understanding and agreement. Apparently, a
technical diagram is not that bad. (Diary, February 12)

56

3.1 Case study: Organizations, environment, decisions

The data model should not be perceived as straight-forward, as it actually had a few
catches, namely that of modeling ticket sales for an event (see Figure 3.7). We spent
some time going through the model. My motivation for creating ticket prototypes
was from a normalization perspective in database theory, ie. that if something was
to be called a �single ticket� and have the same properties in multiple occurrences,
it would have to be a separate entity. I devised a �presales� and �cash� ticket from
this model, and explained the concept. The manager at Venue A told that they had
many di�erent ticket types already as they were using the ticket sales to register
di�erent kinds of entrants, e.g. journalists, promoters, band friends, volunteers etc.

3.1.9.2. Showing the �rst system screen and artifact

After the �nal full system test, participant 'D' told me that the initial reception had
been skeptical as a standard precaution against student projects, but that this had
changed at the meeting where the �rst system-generated ticket was shown and the
purchasing procedure was demonstrated. No further system artifacts were presented
at this meeting. The agenda I had laid out was concerning a range of issues on topics
that I had found during development of system models and the �rst functional
screens. Examples of issues discussed were:

• Should the system be multilingual, and which languages should we support?
Outcome: English and Danish.

• When should tickets be refundable? Outcome: Never, only when shows are
canceled or by management backend.

• When do ticket sales close, on a �xed or customized time? Outcome: Standard
4 hours before, always customizable.

• Edge case: What do we do if a payment arrives after sales are closed? Out-
come: We let it pass.

• Edge case: How do we handle concurrent purchasing processes, ie. tickets are
not bought through a single, atomic transaction. I suggested that some sites
simply reserved the ticket(s) for at limited time and freed them if they were
not bought. How to deal with malicious users? Outcome: Simply limit the
number of tickets in a single purchase. Participant 'G' suggested to keep it a
single-digit (1-9) because he had seen it somewhere - I think it had to do with
fraud and not being able to add zeros.

We did not get to discuss all edge cases of the system, for instance handling of a
login-free system in which authentication was handled through unique URLs sent in
emails. This elaborated in section 3.1.11. Furthermore, I regretted that the partici-
pants did not show much enthusiasm in seeing the work-in-progress administration
backend. I acknowledged that it would mean little to the immediate design deci-
sions, but trying to convey an understanding of the nature of software development,
the kind of extra curiousness could have been a positive sign.

57

Chapter 3 Outcome

One of the most disappointing reactions were that both parties did not
want to see the [system administration] backend at the end of the meet-
ing. Perhaps a bit of fatigue, but after discussing the data model, I
was also quite certain that the simple functionalities of the basic back-
end would serve little to their understanding and my next target in the
development. (Diary, February 12)

From having been a long and sparse process in the November-February build-up, in
which we mainly discussed statutes and strategy, the level of input and commitment
had risen from the �rst meeting containing a work-in-progress IT system.

3.1.9.3. Changes to the cooperative platform and its statutes

Figure 3.8.: At the conclusive stages of the project, these were the components of
the ticket coop.

From the beginning of the project in November and until its conclusion in April,
there had still not been a constitutional meeting nor a revised draft of the statutes
from neither of the two venues. Consequently, the ticket coop only exists through
intentions and its infrastructure, but not through a �nal mandate. In November,
both venues stated their commitment to participate in the coop. During the process,
we met two signi�cant obstacles:

• The administration role of common �nancial assets, i.e. the revenue collected
from ticket sales to be channeled through to each respective coop member.

• Splitting the costs of the coop, either through fees on every ticket or some
other measure.

Even though both issues were �nally solved by means of workarounds, the process
of co-authoring the statutes draft that I had handed out in December failed to
take place, even though several attempts were made to facilitate the process with

58

3.1 Case study: Organizations, environment, decisions

promises from Venue B to deliver inputs. I see the explanation for this mainly in the
delay of �nding solutions to two key issues quickly enough. Uncovering the solutions
told a story of how the design of the organization was dependent on the design of the
IT system, and how IT facilitation played a part. As a �nal outcome, and perhaps
very obvious, we simply dropped a component and a task. During the process, the
coop also gained a new cooperative component and task (see Figure 3.8).

Administrative role

The workaround solution to the administrative role came from an idea fostered from
a draft addressing the perceived administrative role (see section 3.1.6). Furthermore,
it was established that government regulations on �nancial activities ruled that in
order for the ticket coop to handle assets on behalf of its members, it would have
to register every in and outgoing transaction, which would be subject to auditing.
The �nal solution thus became that the venues would ditch part of the cooperative
foundation, ie. the sharing of a payment gateway. The idea of ditching this part,
however, had also come from a quick and random encounter with the manager 'H'
at Venue B:

Before the meeting, I spent 10 minutes by chance with J, the daily leader
of the venue. He was still focused on the administrative part of the ticket
system, the potential for a breach of trust in the government of funds.
This was one of numerous occasions where he would explain the amount
of revenue being generated by events, especially the more expensive ones
where 400 tickets would be sold [economical �gures removed] and the
importance of having secure legal boundaries within the coop. [...] more
players are not necessarily an advantage to the coop, since the economic
part of running the ticket system is quite low and he was even doubtful
if it made sense to share it with Venue A once it was up running. (Diary,
March 12)

The decision furthermore turned out to be harmonious with the already-running
individual payment systems integrated in both venue's bars, and we would only need
to extend already existing contracts with payment authorities in order to process
online payments. Furthermore, the cost of having the administration of coop �nances
would very likely exceed the cost of an individual payment gateway, which would
enable all presale funds to be handled on an individual bank account.

'D' had already talked to the accountant at Venue A, and he explained carefully
how bank accounts and system accounts had to be aligned and chunked into periods
and balanced. The accountant who had overheard part of my conversation with
Participant 'D' jumped in and was briefed on the system's functionality and how
historical data was preserved. He said that it could be necessary to generate a
di�erent kind of export for his account keeping system, and was on par with 'D's
understanding that a ticket coop could not be handling �nancial assets on behalf

59

Chapter 3 Outcome

of the venue, but that the screen built for the administrative role was perfect for
marking transfers and balancing the ticket system's accounts with bank accounts.

Sharing costs

One of the less elaborated cooperative tasks3, would have been to either budget
or post-calculate the number of tickets sold to estimate an individual cost for each
ticket. This would either impose a fee on every ticket or an individualized mem-
bership fee for the participant's in the coop. It could be argued, however, that
as solidarity and trust is established in a cooperation, the necessity and utility of
such metrical cost cutting is shadowed by the simpli�cations of the cooperative ef-
fort. Practically speaking, two members owning a cooperative would �nd it easier
to simply split costs 50/50 than calculating thousands of ticket sales and forecasting
individual ticket fees.

The understanding that equal cost sharing was the way to go came completely
unprovoked from participant 'D' in February at a meeting with management from
Venue B.

Both parties want to split costs and simply do a no-fee ticket system,
and run a coop in which all costs are seen as �xed, annual costs. This
is a new development that requires revisiting the statutes and project
description. (Diary, February 12)

3.1.10. Arriving at design-in-use and rapid development

The �rst meeting in February constituted the �rst review of artifacts. This, how-
ever, had nothing to do with design-in-use, though we were starting something that
resembled rapid development. Inputs were given from the participants at meetings
and actions were immediately taken to implement those on the same code base that
was intended to comprise the �nal product.

The most design-in-use that had been achieved until then, had been my own devel-
opment method: To develop the system functionalities directly targeted at screen
images that I envisioned as the �nal result by constantly seeking a �nal-like repre-
sentation through layout and user text messages.

Adding test data and deploying

After the �rst meetings' presentation of the ticket purchase process, the next com-
ponent to be implemented was the management backend. It became clear that

3It is not shown in Figure 3.8 because to my knowledge it never played a part in any discussions,
however at meetings we discussed the possibility and usefulness of ticket fees as if they would
occur without ever identifying any mechanism at work

60

3.1 Case study: Organizations, environment, decisions

functionalities that were to compute thousands of tickets and gather meaningful
statistics would need data in order to fully understand and verify correctness (see
also section 3.1.11).

Once test data was available, I sent a screen shots to the participants picturing
�ctive ticket sales for shows that were actually in the calendar. A week later, I
deployed the full work-in-progress system and handed out logins. At this stage, the
purchasing function and management backend could be tested. To my knowledge,
non made the e�ort, however, and even if they had, the outcome would have been
undesirable for the communication of feedback, since a user experience hidden from
my perception would lead to no further improvements. Strategically, I knew that
deploying the system on a live test server was a necessary means to gain experience
with maintaining a live and production ready environment.

Guest lists

Figure 3.9.: Check-in screen for ticket scanning, cash sales, and guest lists. Cu-
riously, Venue A had implemented their own ticket de�nitions, meaning that the
cash sale also contains �guest list�, denoting that a guest has entered from a paper
guest list.

Once situated at Venue B for a couple of days, inquiring into and having interested

61

Chapter 3 Outcome

inquiries from the volunteers, a volunteer working the doors at Venue B asked about
the possibility to do guest lists. Not just as a modest request, but actually the �rst
idea that sprung to his mind. The problem was that guest lists were di�cult to
manage as it usually meant multiple sheets of paper being handled, one for each
band, one sheet for volunteers, sta� guests etc. Once passed to the door sta� an
hour before opening, the guest lists would often be changed anyways through many
lines of communication.

This prompted an immediate response from my rapid habit, and I drafted a guest
list feature that would make it possible to exchange unique links to guest lists such
that the venue could simply email a link to a digital guest list to a band. The band
could then �ll in their slots, and the data would automatically end up in on the door
sta�s screen.

However non-ideal the pen & paper solution for guest lists would seem, the man-
agement at Venue B after a short discussion immediately concluded that guest lists
could never be digitized, and that I should not bother continuing down this path.
This decision lasted for a couple of frustrating minutes in which I was trying to
swallow the decision of deleting yesterday's work, but then a new volunteer stepped
into the o�ce by chance just to greet and let me know how fantastic a feature a
guest list would be! As the management at Venue B had not heard the story di-
rectly from the volunteers, we took some time to go through the features on screen
which were ready for guest lists. In this way, the management could both grasp
the functions and options for a digital guest list, while the volunteers could make
their feature requests heard. In this way, we arrived at an adjusted version of the
guest lists, where management's wish to have the guest lists close and have multiple
entries on the same line were granted and implemented while we were still sitting,
talking, reading emails and I was writing code in the same room.

Guest list observations
A worst-case scenario of using current paper guest lists could be: A guest telling
a band member about another guest, the band member telling the booker, the
booker telling sta� at the venue, and the sta� at the venue then looking for where
the sheet of paper might have gone, then �nding that there are no more slots, after
which the response would propagate back. And the scenario was not just cooked
up, actually this was a situation I encountered while �eld observing a night at the
door. And not only that, my sparse observation easily concluded that the guest
lists were taking up huge amounts of time, requiring action from an authorized
person (�oor manager, booker etc.) or a band member to emerge from the back
stage etc. Floor managers also complained that often bands would try to add
more people than they were allowed. Even worse, once people were checking in,
the guest lists were often prone by errors such that guests would have to dial or
even use their smart phones to show email evidence of their claims to enter.

In the end, guest lists were merged into the ticket system's management backend,

62

3.1 Case study: Organizations, environment, decisions

check-in frontend, and a front-end for bands and bookers to �ll in. Even though
practices from the two venues were slightly di�erent, the �nal result was supported
by both managements. The management at Venue A was so happy that they stated
they would setup a computer in their backstage. Band members, that I had in-
terviewed brie�y about their test of the guest list, had prompted that they found
it stressful to have to locate a computer in order to �ll in the guest list, and the
management � always skeptical of luxury demands from bands � at the venue found
their problems to be solvable by simply putting a computer backstage.

Door check-in: Scanning tickets, cash sales, and guest lists

Before starting to develop the door check-in screen, I turned to a couple of obser-
vational nights at each venue. The results were quite di�erent as both venues used
di�erent ticket systems, each with their own signi�cant technical issues to learn from.
Furthermore, the volunteer sta� was very di�erent. At Venue A, the volunteers were
new and unexperienced, and at Venue B, they had up to 10 years of experience and
had a very professional mindset. Both experiences gathered one major conclusion:
That the user interface would have to be very user friendly, e�cient, and absolutely
free from errors.

I sought this error-free, user friendly, and e�cient interface with all the technical
experience, I could gather. A further, signi�cant factor came from the very likely
introduction of hand held devices, and the already existing di�erence in the platforms
that were in place.

63

Chapter 3 Outcome

Observation at venue doors The door sta� at Venue A used an old touch screen
computer with awful responsiveness, culprit in multiple errors. Furthermore, as
they had one system for cash entries, another system for ticket scanning, and a
third system for guest lists, the volunteers often became confused. Tickets were not
scanned because the single computer could not handle two systems at once, and
the poor touch screen interface of the cash sale system resulted in several errors
from di�erent volunteers in a short space of time. For instance, they would register
the wrong price because they had to type in the price every time, and unknowingly
push the same button several times, resulting in wrong ticket counts registered.
At Venue B, there were errors during observations, but the more experienced
sta� informed me that the ticket system's user interface often resulted in wrong
registrations by, brie�y put, indicating success on screen even though a scanning
had failed. Several guests showed up at both venues with a self-printed tickets
that the scanner could not read, a smart phone image of the ticket, and one guest
even had a story about how they she forgotten the ticket at home, 100 km away,
such that the door personnel would look up the ticket by name and email.
I also inquired volunteers about the fun of work. They were happy about sitting
in the door, because it gave them contact with guests. Complains about the ticket
system was that it would defer them from real human contact. One volunteer
enjoyed technical problems scanning barcodes, because it gave a pause in work to
talk to a guest by asking for details and looking them up in the system. However,
looking at the computer screen was painful, because it was a normal, bright Win-
dows user interface in stark contrast with the dimly lit room. So we decided to
have a dark-themed user interface. Furthermore, the response from the scanning
procedure was a large icon indicating success or failure such that the screen could
be perceived with the corner of the eye.

The �nal solution was a responsive, web based interface that used asynchronous
callbacks to allow for e�ciency, even on a slow or periodically failing internet con-
nection (see Figure 3.9). The scanning itself could be done either with a barcode
scanner or by typing in the unique ID for the ticket. Furthermore, it presented all
three functions on the same screen: Cash sales, ticket scanning, and guest lists.

From the observations, I gathered many con�rmations of what I had already sensed;
but there was one irreplaceable lesson, namely the time allocated for each ticket to
be scanned. I had thought a bit about how many seconds there could be spared for
every scan with up to 400 people entering through the same counter within 1 hour.
In theory, it gave 9 seconds for every guest. But theory is very far from practice,
and being present with the sta� gave me a perfect experience of just how frustrating
even the slightest software idiosyncrasy can be. It meant that I chose a full setup
while developing, i.e. sitting with a barcode scanner and a paper ticket to perceive
the system at its fullest function and not leave anything to chance.

64

3.1 Case study: Organizations, environment, decisions

Ticket purchase

At the very end of this description of design-in-use and rapid development comes
the ticket purchase mechanism. It was developed as the �rst system component, but
development lay dormant until full system tests arrived at the end of the process.
Until then, only sit-downs at meetings had introduced the functions of the ticket
purchase. However, the ticket format itself took on quite a di�erent shape once
deployed and handled as an artifact by the managers and through inquiries about
print-it-yourself tickets in general:

• Managers at both venues were interested in sharing a platform for communi-
cating their shows. In their view, the more promotion, they could get, the
better. And because of their mutual similarities in music genre, they got the
idea of putting a �related shows� list on every ticket.

• During observational inquiries, it was found that many concert goers arrived
in groups, with as much as 10 tickets individually printed on a full A4 sheet.
This was inconvenient to both guests and door sta�, and we devised an option
to print multiple tickets on the same sheet.

• Managers wanted ticket buyers to spread their shows on social media, and
suggested that a ticket buyer could link to a show on Facebook. This was
implemented during the �rst stage, and when the �nal system test came, one
of the ticket buyers had mentioned appreciation of the option to share the
ticket purchase on social media.

• I had made emails to be sent with tickets attached in PDF format. Even
though the emails contained both text, show date, ticket ID, and more, it never
generated any reaction. However, participant 'D' noted that ticket buyers
sometimes complained that tickets had not been sent in the current system
and wanted a feature to resend tickets.

3.1.11. Hidden decisions

During the development process, I quickly came to realize that many decisions were
made with little interest or in�uence from the participants � security, performance
issues etc. Far from every aspect of the software had been directly in�uenced by a
discussion or decision. I had to do my own reasoning on the cost/bene�t of further
inquiry.

While working tonight, I came to the idea that most likely, many of my
decisions will never be told to A and P. They are technical decisions,
and there will never be enough time for such details. Even some of
the design decisions are probably not going to be mentioned, although
I think we covered the whole data model diagram at the last meeting.
(Diary, February 21)

65

Chapter 3 Outcome

Some decisions even illustrated an internal con�ict, re�ecting a lack of coordination
with project participants:

[I am currently] Doing a sprint towards a deadline [to satisfy the project
plan], and I see a contradiction in the sense that working hard on pro-
gramming code will become a choice defeating the need to build/dis-
tribute the software such that it may be tested. Any software needs
building, in this case deployment on a web server. I had promised this
last week, but still failed to prioritize it, rather doing more features and
�xing known errors before actually releasing the code. (Diary, March 6)

The following cases illustrates various hidden decision making within the develop-
ment process:

Deploying a test environment: During mid-stages of development, it became nec-
essary to setup an environment that was freely accessible for participants, such
that they could experience the system, although it had not yet been applied
to any real tasks, i.e. events and presales. However, to gain insights, I wrote
a test module to generate test data. These data were not a true re�ection
of historic events and merely simulated ticket purchases for a number of past
concerts. At this point, participants were not saying we want to see the sys-
tem, rather I was saying you need to see the system. Furthermore, the decision
was clouded and postponed by decisions to continue working on known errors
and features and several days passed from my initial promise to grant access,
until I released the test environment (see Diary, March 6).

Fiddling with test data: Since the system would have to handle huge amounts
of test data, it was obvious to myself that every screen artifact had to be
envisioned with thousands of tickets and a long history of concerts. However,
I found that to most discussions and sit-downs, participants did not mention
any long-term perspectives regarding data handling.

Non-PD ideas: Many system functionalities were a result of my own perception
that they would be necessary, i.e. that the system would be useless without
them. There are the basic cases of CRUD (Create, Update, Delete), in which
every object needs basic manipulation functions. Such features were never
mentioned by participants, but at times we had discussions on who should
have access to which object manipulation function. Another set of ideas which
occurred outside of PD-like sessions were the idea of statistics, such as showing
time series graphs of ticket sales �gures, and comparing di�erent shows. Even
though I repeatedly inquired for demands for these statistics or alternative
ideas, I never had any input.

Edge cases: During implementation, I had to analyze several edge cases of the
purchasing process. What should happen if a show was sold out during a
purchase etc. These questions were laid out and found response. However,
probably due to lack of resources, I found myself noting (Diary, March 24)
that I had to make decisions regarding the validity of tickets price at 0.0, since

66

3.1 Case study: Organizations, environment, decisions

they could have ambiguous properties such as is_paid. In order to solve these,
I made a lower-level design decision which in turn in�uenced the behavior of
issuing free tickets.

Security level: I decided to log the remote IP address in case of invalid system
calls, e.g. when a URL for a non-existing ticket is requested. After a number
of attempts, the IP address would be blocked. This was necessary to block
brute force attempts to discover valid ticket IDs.

Recon�gurability: All aspects of the system have been designed to handle localized
data. Dates, currencies, even VAT is regarded as a localized setting. I do not
expect participants to make such observations, but I found it to be a good
idea to inform that the system would be able to handle these. After all, such
recon�gurability comes at a low cost, development-wise, but discussing the
risk of a VAT change for cultural events in Denmark would be very hard!

Remaining risks: Some edge cases were simply not solved or discussed. They
should be, but even though I made note of them, I never brought them up at
a later point. Examples are: 1) A show that is canceled and refunded while
a ticket purchase is pending and 2) Tickets are sent or refunded to an invalid
email address, i.e. a customer does not receive receipts or noti�cations.

3.1.12. Testing the system in its real environment

Once the full system was made operational, it was time to test it. The test included
the full range of processes, except for the payment step in the ticket purchase, which
was replaced by a dummy form for typing in credit card data. The �rst test night
did therefore not sell real tickets, but invited concert goers to test the system, bring
the free ticket which in turn would grant them a free beer.

1. Firstly, the venue management would create the event and guest lists. Then,
they would announce the event with a widget on their own web page and a
link on Facebook.

2. Concert guests would use the purchase process to buy a ticket, receive it buy
email or print it on screen. 22 people participated, most showed up with a
printed ticket, a couple showed up with a ticket to be scanned from their
mobile phone.

3. During the �rst night, the cash sales and ticket scanning process was tested.
83 people entered, and 16 of the 22 free ticket testers showed up. At the second
night, 117 people entered through cash sales, and 20 of the 24 guest list slots
�lled in showed up. 3 bands �lled in guest lists.

4. After both shows, the �oor manager would conclude the night by reviewing
the numbers of the report and send any corrections to the venue management.

67

Chapter 3 Outcome

However, no corrections were amended, and after inquiring, both �oor man-
agers said that no adjustments that they were aware of had to be made. This
is the best evidence found that the check-in process had worked �awlessly.

One of the more controversial issues had been how to verify guest list data. By
freeing the entering process for guest lists, and having bands communicate the guest
lists directly to the door sta� through digital media, the �oor manager and venue
management were afraid of loosing control. For instance, one band would enter
�John Doe +2� in the name, which the door sta� would interpret as legal data since
it showed up on their screen. For this reason, we immediately banned numbers in
the validation of name �eld data.

After creating the event, we found that the widget to be put on the
venue's homepage was defunct. I �xed that instantly. After that, we had
an issue because L had clicked Buy several times. This lead to tickets
being included in the same purchase, an intentional feature, however
something that did not play along with the max-1-per-email restriction.
I �xed that instantly as well. (Diary, April 15)

One of the features of the �rst version of the ticket purchase system had been that
users could add several tickets to the same purchase. During the free beer test we
had imposed a restriction that only one ticket could be bought per email. However,
already at the �rst test, we found that the �rst feature con�icted with the second
feature, so we introduced an option that a ticket o�er (recall Figure 3.7) could have
a customized maximum number of tickets per purchase.

Many insights were created from the full system test, and some were implemented
immediately. Unfortunately, the system tests were late in the process, and the check-
in screen could not be iterated again after the tests. Observations from the check-in
process were never implemented, but they gave insights to further improvements,
although the overall experience had made both management members of Venue A
happy and optimistic of the full realization of the ticket coop within a few months.

3.2. Software product

In the following section, I explain the functionalities of the �nal ticket system, and
what I found to be the most important aspects of the tools I used to develop the
software platform using rapid development and IT facilitation.

I will not describe all functionalities of the application. Examples are limited to
what I �nd to be most important to the ticket coop or to illustrate points of the
methodology. The tools and libraries described in section 3.2.2 are all very recent
open source projects, and the �nal application can be seen as a product of its time
and age, using what I see as state-of-the-art techniques for web applications.

68

3.2 Software product

3.2.1. Application functionality

In the following section, I will describe the overall functionality of the application,
as to give a sense of what has been designed and ultimately developed. For a full
list of application functionality, see sectionB.2.

Recalling that the system was divided in three components (Ticket Purchase, Man-
agement Backend, and Door Check-in � see section 3.1.8), it should �rst of all be
noted that the description of these components held true to the �nal result. The
system was implemented in a fashion that resembled the objectives from its plan-
ning stages, and deployment in a real environment was �nally done in all aspects,
except that it did not include payment processing, and real usage was limited to
just 2 practical cases, i.e. concerts.

All of the application's components were operational from a web browser. The inter-
face implemented modern responsive layout techniques, making the UI agnostic to
both handheld devices, touch screens, and PCs. Data processing respected all kinds
of state of the art validation, the full application was localized, and the application
was readied to scale for deployment in a fairly large production environment.

That the application was a web application means it was not de�ned by a singular
application interface. It could conceptually be divided into several modules, for
instance by using server side and client side paradigms. Whatever the modular
divisions, it is hard to de�ne the causality of each module's emergence, nor to
describe a functionality as an individual entity. To maintain a focused discourse and
keep this description short, the we turn to a more user-oriented focus on application
functionality. If we chose a more technical discourse, for instance a description of a
ticket scan could follow likes of data transmission, application state, and functional
input and output, and we could trace through keyboard input passed on to the
browser application, markup language presentation, network layer transmissions,
server side application layers, and database manipulation � and then all the way
back again.

The kind of application description that is laid out in appendices, and in this section,
is meant as to guide the analysis with a perception of what kind of application was
developed, but not to dismantle the whole software architecture.

Responsive layout One of the features of the application was the broad adaption
of responsive layout techniques (see Figure 3.10). As a feature, it meant that many
scenarios of usage would be satis�ed already from the beginning, and without having
to create multiple independent UIs, adding complexity and further testing. Scenarios
count:

• Ticket holders can order and show their ticket on mobile devices.

• Managers can use the backend for creating and updating events on the go.
Furthermore, they can check up on statistics (a requested feature during de-
velopment).

69

Chapter 3 Outcome

Figure 3.10.: Responsive layout techniques were used throughout the UI. Screen
shots depict the same web interface, but seen with a normal PC size and mobile
size screen, respectively.

• Check-in screen can be operated from touch screens, and even smart phones,
with or without a barcode scanner.

• Printer friendliness, especially many management backend pages, such as event
reports, are also relevant for printing.

Statistics and visualization

In order to guide the venues in their promotion and re�ection on past achievements,
the backend comes with a number of �gures and statistics. The implications of
selling tickets were that the venues had to know:

• How many tickets were sold at any given point in time: Displayed on both
event lists, reports, and statistical overview

• How much revenue was generated and to be able to balance accounts between
the ticket system and book keeping systems: Is displayed in the event report
and a special page for extracting and �xing revenue counts.

• How ticket sales progressed over time: Can be compared with other events on
the events list and seen as the latest �gures on a statistical overview page.

70

3.2 Software product

Social media

By clicking a button for every di�erent popular social media platform after com-
pleting a ticket purchase, the ticket holder can easily inform peers on Facebook and
Twitter about their concert plans. Event pages are made using meta tags for in-
tegrating on social media platforms, such that links can easily be posted by event
promotors.

Venue managers have access to copy and paste a special embed widget, which they
can place on their own respective websites, and bands etc. can use it on theirs. The
widget has a dropdown menu for selecting the number of tickets to buy and a Buy
button, taking the user directly to the purchasing process.

Check-in screen

When scanning tickets, selling cash tickets, and validating guest lists, the door sta�
can operate a dark-themed and very simple UI. At its maiden voyage, it was used
without any complications or known mistakes.

The UI puts default focus on the Ticket ID input �eld, meaning that a keyboard
or barcode scanner will by default feed input to this �eld. In this manner, tickets
can be continuously scanned without the need for any other interaction with the UI
than with a standard USB barcode scanner.

If problems arise, such as un-scannable barcodes, people who have forgotten a ticket,
or cash tickets that need refunding, the door sta� can navigate to a screen that lists
all tickets.

Furthermore, the screen displays the number of current entrants and the number of
total sales, including presales. This gives the door sta� an insight in the number of
people present inside the venue, such that they are informed in a way that they can
easily update other sta� members, and safely know when to close the doors in case
an event becomes sold out.

The whole interface for scanning and selling tickets and marking guest list entries
is asynchronous in its communication with the web server. This means that broken
internet connectivity does not cause data loss or system freeze. The sta� can con-
tinue to scan tickets etc. without pausing. The UI will warn the user that she is
working o�ine.

Easy UI

All application components are made with a maximum focus on minimum inter-
action. Feedback is always given upon interaction, for instance every form update
results in a success or error message consistently placed at the top of the following
screen.

71

Chapter 3 Outcome

Form �elds in the backend are made using dropdown menus whenever choices are
limited, and for instance all date and time �elds are based on a calendar widget.
After form submission, if a form �eld is invalid, it is marked red, and the error
message appears next to it.

Navigation and language has been adapted to common phrases used by the venues
themselves during the process. For instance, guest lists are modeled to be almost
identical to normal guest lists. As such, the software does not attempt to intro-
duce any new unnecessary terms, the most severe exception being the use of ticket
prototypes and ticket o�ers (see section 3.1.9.1).

3.2.2. Technologies in use

In the following section, I review some of the upper-layer technologies that have
been fundamental to the development and design. By upper-layer, I refer to software
which has a direct interface to my application project or development process, for
instance a software library that is imported into the project's source code or a tool
that I use for writing, building, testing, or deploying the project.

Django, a web framework for rapid development and clean, pragmatic

design

The most important tool of the project was Django (Django Software Foundation
(2013)), an open source, Python-based web framework for writing the server side
part of the application. Core to the principles of Django, is the slogan Don't
Repeat Yourself or DRY, adding intent to the e�ciency of work. Django is based
on an object-oriented paradigm, and the easiest way to understand the framework's
role is by observing the �ow of web server request and response, i.e. that the web
framework handles a request and returns a response:

django(http_request)->http_response

Anyone familiar with the Model-View-Controller (MVC) can imagine Django as
the controller that calls the programmer's view function, which invokes a template
(usually an HTML �le), and �lls it with data from the database. Inside the view
function, the programmer does not indulge in parsing HTTP requests, creating re-
sponse objects, or writing SQL for database queries. The utilities of Django and
its layered handling of HTTP requests result in an architecture in which di�erent
programming languages can be handled separately with clean interfaces. Function-
alities can be divided in a logical, testable, and reusable manner. Furthermore,
Django can be seen as a toolbox, from which common tasks are standardized,
and based on long-standing community discussions and best practice. I found the
following properties of the framework to be indispensable to the outcome:

72

3.2 Software product

Class and model inheritance: Data models and classes can inherit properties of
ancestors. As Django comes with a lot of common functionality which can
be extended, it has an immediate impact on functionality, and in most cases, a
usable interface and database architecture can be sketched and deployed with-
out minutes. An example of such inheritable structure is the authentication
system, which gives any project a full scale, but basic authentication system,
ready for further adaptation.

Decorators: In Python, which is a higher order programming language, it is pos-
sible to wrap functional calls easily around other functional calls. In this man-
ner, functional calls can be added and reused in an explicit manner, suitable
for e.g. authenticantion mechanisms that need to be implemented in a uniform
and strict manner across a software platform. In our case, we used it to easily
and explicitly check for venue administration rights on the management back-
end. In the application, I tried to immediately acknowledge authentication
functionalities that would be reused across several class structures, making
subsequent features easy to implement and authentication mechanisms easy
to alter at a later point.

Class based views: CBV is a relatively new design pattern of the MVT arena. It
makes it possible to piece together web page functionality such as showing
a list of database objects, creating a new object in the database, logging a
user in etc. Core to CBV is that compound functionality has been split and
parameterized to allow for class inheritance. All views of the project extend
highly similar common functionality from the built-in CBVs of Django.

Object-Relational Mapping: ORM makes SQL statements redundant and trans-
lates database results into native programming language types, a popular fea-
ture of Django and similar frameworks. Many critiques argue that using
ORM may result in lower performance, but to the rapid developer, and to
this project, it meant for fast paced development, and I did not observe any
performance issues.

Gettext translation: Having a simple habit of wrapping all UI messages in gettext
calls, means that an application becomes easily translatable. At the end of
developing, and iteratively, I could translate the UI in a separate environment
from the application.

Forms: Django comes with a library for generating forms for data models. This
includes the ability to convert the forms into HTML markup and process the
HTTP response object, safely validating data and saving it to the database. I
used this for all forms throughout the project, cutting away needs of writing
validation, passing data from the form the database etc.

Admin backend: Any system needs an administration or superuser backend. In
Django, this comes almost for free, as it is automatically generated from the
data models of the application. Automatically generated means that the ap-
plication will have all CRUD web interfaces readily available.

73

Chapter 3 Outcome

Documentation: A guiding principle and in some cases culture of Django and its
many models, is the style of documentation, which often features copy-paste
ready examples and thorough explanations. Documentation has a focus on
user friendliness over technical precision, as the latter is preferred to be found
by reading source code.

Debugging and feedback: Whenever a web page fails, it will output a precise
stack trace. Furthermore, additional debugging tools make it easy to spot
performance issues by simply adding debugging content to the web page. If
an error occurs on the production web server rather than the developer's own
machine, the server can send an email directly to the developer, containing
full debugging information. In this way, errors can be discovered and �xed
promptly. I found this very useful, as I would deploy new functionality that
failed in its �rst user tests, but instead of debugging on the user's machine
or logging into the web server, I would have all debugging information readily
available in my inbox.

PDF handling

The reason for mentioning this, is that the PDF format is complicated and often
prompts a lot of know-how and e�ort to produce in a parameterized fashion. Us-
ing xhtml2pdf4, I found a way to generate PDF responses from the web server,
which perfectly integrated with the rest of the Django framework. Since the library
needed pseudo CSS/XHTML structures as input, the usual Django MVT pattern
was applicable and able to feed the exactly the input that xhtml2pdf needed,
harnessing from template inheritance, and various template generation utility func-
tions. Put in simple terms, PDF tickets could be customized by simply editing a
simple .html �le.

Responsive layout

Responsive layout is almost impossible to create using bare CSS and HTML. The
combinations of browsers and devices makes it impossible for a developer, and on
the other hand there's no need to comply to the same standards in every appli-
cation. Therefore, a lot of responsive layout frameworks have emerged, and the
open source project Twitter-Bootstrap5 is one of them, giving the developer
a grid-based layout technique with widgets, highly optimized typographic settings,
icons, and more. The framework itself is written on top of another open source
project, LESS6, a domain speci�c language targeted at e�ciently generating CSS
and enabling code reuse. Both Twitter-Bootstrap and LESS are applied in all

4http://www.xhtml2pdf.com/
5http://twitter.github.io/bootstrap/
6http://lesscss.org/

74

3.3 Summary

aspects of responsive layout, making development for several devices and browsers
highly e�cient, and minimizing the level of layout logic embedded in the HTML
code, which thus becomes more of a container for data structures.

Development tools

I regrettably did not employ all known tools for rapid development, but these are
examples of my own subset, i.e. the development environment and the tools that I
enjoyed:

• Changing application code, spawns an automatic reload of the development
server

• Altering data model structures can auto-generate database migration scripts

• Static web server contents (such as CSS �les, images etc.) are automatically
gathered and deployed in a statically served environment

• Changing and saving a LESS �le automatically built a CSS �le without invok-
ing the LESS compiler.

• Mozilla Firefox made it possible to test di�erent layout sizes and introspect
and manipulate CSS and HTML structures, making it possible to experiment,
sketch, and debug without altering source code.

Deployment One of the key features of Django is its focus on deployment which
follows naturally from the rapid development aim. The use of automated delivery
tools become key to the developer, and rather than maintaining control of a case-
by-case based deployment process, the rapid developer gathers all these processes in
scripted programs. This is also known as Continuous Integration and Continuous
Delivery. The development process, however, lacked features of Continuous Delivery,
such as automated test cases and automatic deployment from a master development
branch in the version control system. The reason for this was indeed that my own
habits fell short of writing test cases. Controversially speaking, I did not see the
utility of such test cases or test-driven development in the settings of a rather small
project that did not su�er from any immediate external dependencies or to deliver
functionality or data to external interfaces.

3.3. Summary

Measured in terms of product quality, the development process has been successful
in establishing a software system able to generate and sell tickets and support all
known relevant aspects of the venues participating in the ticket coop. Meanwhile,
the full scope of the project failed, as the ticket coop was never o�cially launched

75

Chapter 3 Outcome

within the time frame of the project. Participants remain committed to establish
and launch the cooperative in the immediate time to come.

In terms of risks, I have mentioned the process of establishing the project, and the
objectives and intentions behind. Following from this, we have seen that problem-
atic structures in the organization have been dealt with continuously, and both the
organizational structure and IT system have been adapted to resolve those issues.
This was a gradual development, involving several meetings between management
of both venues, and the technological insights from IT facilitation and steps from
rapid development.

The greater number of decisions and discussions made through the development
process have not been mentioned in this chapter, but the variety and quantity of
examples should illustrate that a process of co-realization has indeed taken place.
As with the description of the application, I have not mentioned all aspects, but
sought to illustrate a variety of goals achieved and properties of the development
process that are of interest to the successive analysis chapter.

In my experience, the outcome was not predictable, from which I infer that that
the process has been complex enough to reach beyond the banal and to become
subject of interest to the analysis. Unpredictable elements of the �nal organizational
structure and application include the discarding of joint payment gateways and
common �nancial administration. On the other hand, and perhaps more of a more
innovative nature, participants were able to formulate several ideas and have them
included and tested throughout the process. Finally, the ticket coop's IT system
came to include and combine functions of two otherwise fragmented systems (paper
and IT system, respectively), which I suspect from the two test cases can be of great
bene�t to both venues.

76

4. Discussion and Analysis

In this chapter, I present a discussion that focuses mainly on the insights from the
case and relates them to the synthesis framework, risky and rapid design spaces.
Moreover, I suggest improvements for a hypothetical future study. Since the frame-
work is a synthesis, I �rst analyze the extent of which it already resembles compo-
nents of the synthesis. Furthermore, I discuss how alternative methodologies contain
elements that fall short of the case study and framework. Finally, I discuss the scope
and applicability of the framework seen as a methodology and how the framework
de�nition falls short in the sense of leaving questions open.

4.1. Overview

In order to address key questions and thereby draw a �nal conclusion in chapter 5,
the current chapter is divided into 3 main parts:

Case study practiced as research: A re�ection on the upper-level methods em-
ployed in the case study, and their shortcomings, i.e. the research methods,
not the ethnomethodology targeted at the embedded design process.

Results of the case study: A discussion of the result of the case study in a broader
scope: Did it cohere with the synthesis framework, what did it achieve, and
could the outcome have been achieved through alternative methods?

Risky and rapid design spaces: Scope and applicability : Finally, I review the
framework and discuss its role as a guiding methodology in order to see if it
may contribute to software and organizational development in other settings
than the case study.

4.2. Case study practiced as research

A major goal of establishing a discussion and analysis of risky and rapid design
spaces grounded in the case study, is to see that the synthesized components address
the outcome without missing substantial parts of the process. As the very �rst,
therefore, we turn to the methods applied in the case study, and their e�ectiveness
in addressing the synthesis framework (for a de�nition, see section 2.2). There are
a number of shortcomings, which shall be elaborated in this section.

77

Chapter 4 Discussion and Analysis

4.2.1. Research methods

Firstly, time constraints meant that it was di�cult to maintain both IT Facilitation,
development, and ethnographic studies all at once. I tried to address the necessity
of concurrent activities of software development and ethnography as Bentley et al.
(1992) stated (see section 2.3.1), but found a further time constraint issue of ethnog-
raphy. As a result, the case study is a mixed reconstruction of my own observations
and experience, highlighting those themes that I �nd relevant for the analysis, which
in itself is problematic. Furthermore, as it took considerable share of the time frame
to arrive at a full-scale usable platform, our design-in-use concept was only applied
to limited system functionality, and therefore only gives as mere sense of what rapid
development means. This could be seen as if the study just needed more time to de-
velop, but expanding the study time-wise would not resolve issues of a single-person
IT facilitator, developer, and observer. Requiring more e�ort from one role would
take away resources from another, ultimately harming how the case study could
perform as it is intended. For instance, if I was to spend more time observing and
inquiring into the organizational structures, I would not be able to respond rapidly
to issues raised by participants, and the day-to-day information �ow of the RAD
cycle would be lost.

Ironically and contradictory to the above, I was actually able to generate more
data in my diary, than I could include in the outcome. This autoethnographic
nature of the study and its biased prioritizing of issues alone calls for an objectivity
check. Firstly, we need an external part to add such objectivity, i.e. someone
who is not participating in the project. This supports the previously mentioned
shortcoming by relieving the developer and/or IT facilitator from such tasks and
puts the facilitator in a more natural position. Some of the interesting issues that
could have been addressed through a more thorough debrie�ng or observational
studies are elaborated in section 4.2.3.

Counter to the argument of third-party objectivity remains the insights generated
by participatory involvement. Because of these insights, I �nd it reasonable to say
that autoethnography has turned out as a highly e�cient tool for reconstructing a
complex process.

4.2.2. Case study practices

During the case study, I have come across deviations from the synthesis de�nition, or
rather, methods that should have been applied to a larger extend but saw practices
outside of the methodological scope take place. This relates to my own initial
absence from a real situated context, but also that the participants often failed to
respond and participate. There are several reasons for this.

As a typical case of ivory towerism, I was reluctant, especially in the beginning, to
engage with the normal working day of the venues. Naturally, they have no o�ce

78

4.2 Case study practiced as research

space for a programmer and even worse, a programmer doing research. Because
of this, I wrote the initial structures of the software assuming that it would be
of limited bene�t to situate myself in the everyday of live music production and
promotion. Even worse, I thought that it would be harmful to productivity, being
assumptive of the stability of design decisions and that they would remain unchanged
by the involvement of any further context. I have chosen to depict this as a range
of hidden decisions (see section 3.1.11) � a reconstruction of diary contents � but
the speculation remains that they could have been avoided by engaging in a more
situated context. This does not necessarily speak against the framework seen as a
methodology but is to be seen as a �aw in the case study. Otherwise, the discussion
should be from a point of view that developer absence from context and co-location
is a natural element and should be thought as such � which is a limitation of this
study.

The lack of participation is already described as a natural precaution taken by venue
managements (see section 3.1.5). As the framework seeks to address design processes
by acknowledging the risks and moreover targets such risky circumstances as organi-
zational establishment, entrepreneurship etc., we should anticipate such precautious
behavior. By debrie�ng with one of the venue managers, I found that such re�ection
on precautious behavior was accessible as subject of research and quite bene�cial
to the understanding of the process. To bring about more certainty and less spec-
ulation, a better case study should explore and reconstruct events together with
participants afterwards, rather than only gathering data while regretting a lack of
participation.

A less controversial and more obvious retrospective grievance has been a lack of
version control commit logs during development of the software. As the plot in
Figure 3.3 reveals, there have not been enough commits to create a smooth repre-
sentation of the project's quantitative development. Moreover, commit messages
could have told a detailed story of decisions made and cross-referenced to the diary.
This could have been subject of a supplementary retrospective analysis (Krogstie
and Divitini, 2010). As a practitioner of programming and a regular user of version
control systems, I would have found it natural to explore the past through a version
repository, and in this light, I �nd it problematic that it was not included as an
explicit method of the study.

4.2.3. Missed points of inquiry

In order to get a better understanding of obviously contested core methods of the
framework � co-realization, design-in-use, and rapid development � the case study
and the background theory could or should have addressed further issues. Some
suggestions are:

1. How does participation change once the design process is concerned with the
actual product rather than abstract artifacts, prototypes or other subjects of

79

Chapter 4 Discussion and Analysis

discussion?

2. Do participants perceive the di�erence between prototypes and the actual
product, or is this distinction merely a technical one that the developer or IT
facilitator should not concern participants with in the design process?

3. What strategies of IT facilitation can be employed? In Hartswood et al. (2002)
the broadest sense of the term could be countered by more studies coming up
with a set of strategical guidelines.

4. In what way does the speed of development a�ect the design process when
there are no design artifacts and ideas are exchanged informally? I.e. just
how crucial is the process �ow to the risk of stalling and repetition?

5. How would participants have envisioned the ticket system without facilitation?
I.e. in the case study, how would the design have been formulated by the venues
independently of the IT facilitator?

6. Does the inclusion of non-technical users in hard technical decisions have any
diverted e�ects?

7. How can we avoid unproductive user-designer dichotomies Botero et al. (2010)?
I.e. which circumstances and methods bring about such problems for the IT
facilitator when acting out the role of facilitating a design process in front of
users?

4.3. Results of the case study

In the following section, I �rst revisit some key practices of the study that resemble
a synthesis of co-realization and rapid development, and the design spaces that were
available to participants and IT facilitation. This argues the coherence of the case
study and risky and rapid design spaces.

After that, I revisit the project establishment process and discuss the goal of reaching
the RAD cycle. This was perhaps the weakest point of the case study outcome and
the overall discussion addresses whether it should be seen as a natural decision or
consequence of my methods or as an unguided mistake.

The �nal parts of this section describe the complexity reductions and the added
qualities that I perceive the development methodology has resulted in compared
to how other methodologies may have ventured in this speci�c setting, e.g. agile
methods and Participatory Design. This part puts special focus on the aspects of
the case study that were successfully executed and �nally claims that the software
project itself has the quality of a larger production-ready project, credit to the use
of development tools and software libraries applied.

80

4.3 Results of the case study

Co-realization Throughout the process, I managed to place myself as IT Facil-
itator in the broadest sense of the term as described by Hartswood et al. (2002).
Without using the term, it could be argued that I acted as project manager and de-
veloper, but with no economical stakes or attachment to the organizations. During
all phases, I uncovered information to design and develop the application by par-
ticipating in the organizational formation and meeting directly with management,
and users at all levels. Moreover, I was able to inquire into and suggest changes to
organizational structures of the ticket coop and ensure a consistency and interplay
between organization and IT system.

Rapid development The software development process emerged without a re-
quirements speci�cation or an elaborate set of design goals, but simply an overall
project description being discussed at meetings and then transformed directly into
software artifacts. This is perhaps the strongest evidence that the approach resem-
bled rapid development. Furthermore, those software artifacts were not prototypes,
but as a developer, I consistently sought to continue evolving the same software
platform with the need of greater software refactoring. This was aided by an in-
credible range of software development tools and libraries that supported the rapid
development approach. What was lacking in this process, was time and resources
allocated for design-in-use and other such re�nements that could have been said to
take place within the iterative cycle of design-development. Rather than re�ning
the same functionalities and adding insights and participation, the iterative cycle of
this particular project (see section 3.1.10) was mostly adding new features, with a
few exceptions.

Design space From Botero et al. (2010)'s de�nition of design space, we see that
they unfold two main points (see section 2.3.2), brie�y summarized that design space
is a exploration and co-construction through social interactions based on technol-
ogy, and the design space is framed by a number of conditions, many of which are
deliberate. In the case, we can envision the design space in a number of cases:

• The strategy of IT facilitation, i.e. that the facilitation has supported partic-
ipants in their understanding of technology and actively inquired into design
issues. This was the case at every meeting.

• Rapid development tools aided the developer to sketch and transform ideas
into usable software, creating a much more clear and deep understanding of
the system.

• Communicating the high a�ordability of rapid development tools, i.e. that
ideas merely needed to be communicated informally and would then be sketched
out in the product itself. In the most illustrative cases of the case study, it
meant that ideas could be implemented and altered quickly thereafter.

81

Chapter 4 Discussion and Analysis

4.3.1. Contemplating alternatives

In the following section, I contemplate the possibility for having applied alternative
methods for design and development, seeing that the ticket coop was a construction
of both social and technological nature.

Because of doubts concerning both technological outcome and the practices occur-
ring from these, the establishment of the ticket coop took up considerable amounts of
the project, and resulted in an unfocused and at times stalled emergence and estab-
lishment. Because of this, it seems unlikely that any top-down approach could have
been applied. The organization supporting the software system, i.e. the ticket coop,
simply would never have existed if rapid development or some other form of extreme
programming had not been applied to uncover controversial and fundamental design
issues. Furthermore, we can speculate that in our particular setting, it would have
required additional resources to construct design artifacts and prototypes within
the time frame, as rapid development resulted in a �nal product without reiterating
or refactoring any signi�cant elements. Such incidents could have argued that a
preceding design process was in place, but they remained absent.

The mere technological platform (see section 3.2.2) of the development process highly
resembled any other Extreme Programming (XP) platform, and many advocates
may be identi�ed for this isolated part of the project. However, seeing that there
was no project management in the project, it is hard to say which other entity in
the project could have guided the design. The lack of understanding of how, for
instance, the venue managers would have designed the ticket system independently
of the facilitation can only be speculated, but it is fair to say that none of them had
any previous experience of creating IT systems and mostly sought to describe their
wishes through perception of the systems they were already using. The innovative
parts of the project occurred through facilitation or rather, a deliberate expansion
of design space. Furthermore, since the process showed how the in�uence of IT
facilitation at an management/strategic level was important to the establishment of
the ticket coop, it is possible to say that the presence of facilitation at this level was
even necessary1.

Without any further elaboration, I �nd it fair to conclude that rapid development
was the only realistic design and development strategy for this particular case study.
Most real-life projects, however, need funding or some other guarantees or assess-
ment of risk. This is where I �nd co-realization to be an indispensable part of the
project. Since most established and well-de�ned methodologies have built a hierar-
chy (take for instance SCRUM), in which the programmer has been isolated from
organizational and strategic planning, it is hard to access the overall grounds of
decision making. Had my participation been secluded from the establishment of
the ticket coop, it would have been likely that the rapid development of features

1I �nd it hard to completely exclude the possibility of an agile method targeting such �exible and
improvised IT facilitation, yet I have not found one that �ts.

82

4.3 Results of the case study

had concerned a limited scope of the overall project. This criticism is also raised in
Turk et al. (2002), in which they touch upon the problem of failure to reuse software
functionality by generalizing correctly in accordance with the some social reality (see
also the Don't Repeat Yourself principle, section 3.2.2):

Agile processes such as Extreme Programming focus on building software
products that solve a speci�c problem. Development in "Internet time"
often precludes developing generalized solutions even when it is clear
that this could yield long-term bene�ts. (Turk et al., 2002)

I can only guess, but in my own experience, the lack of proper access to organi-
zational and social context and decision making, often means that these scenarios
arise. Instead of seeking a top-down methodology, which is already argued as unre-
alistic for this case, we can avoid this pitfall by emphasizing this certain aspect of
co-realization.

4.3.2. Reducing costs and complexity

From the knowledge gathered by performing the IT Facilitator role, I found it easy to
access information necessary to make design decisions together with the participants
to meet their needs. The �nal outcome exceeded their prior commercial platforms in
terms of the user interface, functionality targeted at venue needs, and it even joined
otherwise fragmented systems. Holistically speaking, this came at a low cost: Just
a couple of months of e�ective design and development, and the system was able to
go through testing without any issues or failures. This should be in stark contrast
to what is achievable with a top-down approach, as illustrated by an ancient times
COCOMO calculation, estimating the man hours needed to complete a software
project of our size to be over 12 months (see sectionC.2).

Over two decades after Martin (1991)'s ground work on Rapid Application Devel-
opment, the goals of reducing complexity and meeting user needs still support each
other (see e.g. Martin (1991) p. 80 and recall Figure 2.4). Even though this an-
cient work on development methodology has many out-dated descriptions of concrete
practices, the 30 recommendations for I.S. Methodologies (Martin, 1991 p. 80) still
hold true to the vision of this study. Most design decisions could be taken in an ad
hoc fashion, inquiring when needed, and letting users give feedback as they tested
the system.

During the case study, I was able to do inquiries without any prior appointments
or agenda planning. I could stay at the venues and work while people or users with
expertise were available for resolving issues or questions at hand. As a counter-
balance to constant inquiry or an overly problematizing design process, I could use
induce my own resolution to design questions. When issues involved design decisions
with little relation to organizational or social structure, I would turn to more hidden
decisions (see section 3.1.11). As the project developed, I was able to improvise as
I deemed necessary, which proved to be valuable, as the venues themselves were

83

Chapter 4 Discussion and Analysis

dynamic or unreliable partners. Put in another way, the venues had a matching
situated and improvised nature.

The software architecture following from rapid design frameworks meant that pro-
grammatic structures were made to adapt for future expansions and develop in an
organic way. By keeping focus on re-usability, I was able to develop each function
on the grounds of previous work (see section 3.2.2). This rationale does not neces-
sarily follow from working from a �xed set of requirements, nor from working with
prototypes and throw-away code.

Finally, with regards to the risks of development, the pieces really come together: If
there are risks involved in the match between unknown organizational consequences
or technological complexities, it seems like a viable strategy to explore both at the
same time. In some cases, we may see rapid prototyping as a better option, being a
close relative to rapid development (for a general discussion, see section 4.4.4), often
building on the exact same software tools and frameworks. In this study, the need
for prototyping was eclipsed by the certainty of supporting structures which made
it realistic to lay out a foundation and keep design experiments and sketching at a
production level.

The view is supported by Crabtree (2004) with the demand for ethnomethodology
to be properly incorporated into design and construction phases, what they see as
a hybrid mixing-pot of design practices and technological development. Something
that Co-realization and Rapid Application Development covers for very obvious
reasons, i.e. design-in-use.

This is a highly economical and e�cient use of what is often considered an
expensive and time-consuming approach. It requires only short periods
of study. (Crabtree, 2004)

The adaptive and improvised nature of the development process can thus be seen
as cost e�cient. The very minimal methodology guiding the process and the very
simple and free role of IT facilitation still acted out a hybrid mixing-pot of design
practices and technological development � in this light, it can be said that the
synthesis development approach had managed to reduced complexities which would
otherwise be imposed by the multitude of more structured methodologies.

4.3.3. Technological enablers

The case study can be seen as a bridge between contemporary technological prac-
tices and development methodology, although we may �nd that in some cases the
methodology creates the demand for such tools. Even critiques of XP practices are
acknowledging the technological discourse (see Turk et al. (2005) quote below). But
their fear of heavy refactoring was empirically speaking never a real risk in this par-
ticular case study. Throughout the facilitation, I did not fear a surprise hat-trick
of new demands, rather I tried to pro-actively inquire in cases where refactoring

84

4.3 Results of the case study

was a risk, for instance regarding permissions and authentication. This was also the
reason why the data models were laid out (see also the section on my own biased
habits of such, section 3.1.7).

This assumption allows developers to do less than thorough analysis and
design in the early phases and, instead, make improvements throughout
the course of the project by refactoring the code. There is no objective
evidence that this assumption is valid in general, but it can be argued
that the cost of change curve can be �attened by using reusable design
experiences in the form of architectural and design patterns, and capital-
izing on new technologies supporting rapid program development (e.g.,
libraries, components and frameworks, and more powerful compilers that
enable short and incremental compilations). (Turk et al., 2005)

Summing up on the discourse set out by early likes of Martin (1991), the study
testi�es of a development that has greatly reduced the complexity and cost of the
design process through technological enablers and an understanding and deliberate
use of these.

A last point to be made regarding technology for rapid development, is the possibil-
ities which were not reaped. First of all, I did not use automated test cases, which
could have been bene�cial, had the project increased in complexity, but also to en-
sure its future development. Related to this, but not that test cases are fundamental
to such a method, is the idea of Continuous Delivery and Integration. I developed
the project in a simple code base, which could have been split into production and
development, automating processes of delivering the production ready features.

4.3.4. Participation vs. non-participation

In the following section, I observe the choice between participation and non-participation.
Core to the role of an IT facilitator is the choice of inquiring into speci�c cases of
design, the agenda setting of meetings, choosing what to observer, and the overall
usage of PD methods. In this elaboration, these are all seen simply as participation.
As the study did not compare any levels of participation or establish some range of
choices or alternatives, it leaves a room for discussing and hypothesizing any such
practical guidelines. On the other hand, the study was a perfect example of not
formalizing or intending any speci�c levels of participation. In any case, I pointed
out deviations from the synthesis framework (see section 4.2.2).

In order to enlighten the discussion of costs/bene�ts of participation vs. non-
participation and guide the IT facilitator in this choice, I have devised a very simple
list of classes of situations that speak in favor of each (see Table 4.1), but the �nal
decision will most likely be a mixture of all, i.e. a gray zone.

With these guiding principles, I do not seek to establish anything more than a
mere call for intuition. Many of the choices will become impossible, and from the

85

Chapter 4 Discussion and Analysis

Participation Non-participation

1. Uncertainty of social or
organizational behavior

1. Fair certainty of social or
organizational behavior

2. High value or consequences for
organizational objectives

2. Little relevance to organizational
objectives

3. Lack of understanding of
organizational consequences

3. Conventional solution exists

4. Necessity of understanding
technical issues: Behavior and
development of user instructions

4. High technical value: Security
issues

5. Added value of explaining technical
choice and/or low cost of
implementation

5. Technical choice with high cost of
exempli�cation and explanation

Table 4.1.: Deciding between participation and non-participation: Guiding princi-
ples drafted from the case experience.

experience of the case study, almost all of the choices of non-participation (see the
list of hidden decisions, section 3.1.11) could have been made partly more visible
to participants. Although the nature of the case's non-participatory aspects was
mostly technical, we should still ask to the result of of opening up the discussion
to the users. Mainly because this could guide us towards a purely participatory
approach and relieve the IT facilitator of hard choices.

From the lack of a real in-production iteration of the RAD cycle, I found that users
were at times reluctant to give any real feedback. This is strongly supportive of the
Table 4.1 guiding non-participation principle 2. In order to create statistics of ticket
sales, I used my own perception of what might be necessary, of course guided by
previous participatory activities, but not attempting to inquire any further into the
speci�c ideas of visualizing statistics. I found after the test runs of two ticket sales
that the users had nothing further to add to this, emphasizing that some cases need
more usage (with real data!) before any real design-in-use can take place.

An understanding of the choice of a participatory elaboration of design decision in
the continuum of development is fundamental to co-realization. The design space is
thus not always expanded by setting out a participatory discourse if this becomes a
limit or hindrance of utilizing the IT facilitator's own judgment or intuition.

86

4.4 Risky and rapid design spaces: Scope and applicability

4.4. Risky and rapid design spaces: Scope and

applicability

In the �nal section of this chapter, I turn to a broader discussion fueled by the
analysis of the case study. This includes criticism of agile methods and Participatory
Design, keeping the nature of the case study in mind and drawing upon the analysis
of the previous section. Onwards, I point out the most critical issues from the case
study if the synthesis framework was to guide other software projects, and try to
forge relevant criticism to build a case in favor of risky and rapid design spaces.

4.4.1. Design-in-use; Co-realization, PD, and agile methods

A number of alternative methods could have been employed in the case study, or
was in fact by de�nition employed (see section 4.3.1), and we pickup the discussion
of these to draw upon the existing body of criticism that has been raised in former
works. One of the major discussions would be the question of where design should
place, or rather where and when to upon up design space, recalling the criticism of
bounded design in section 2.3.2.

Co-realization and agile

Risky and rapid design spaces is targeting a development strategy that is incremental
and to some degree acknowledges an iterative process. These are elements of agile
methods that were initially inspired by RAD, and thus not very di�cult to show
as highly similar. But what about Co-realization? Since Co-realization sees users
participate in system design, adding situated guidance from the developer, two very
speci�c entries of the Agile Manifesto (Wikipedia, 2013a) would seem very similar:

• Close, daily cooperation between business people and developers

• Face-to-face conversation is the best form of communication (co-location)

Adding guidance from the developer without any contextual placement would both
violate Co-realization's principles and the Agile Manifesto. It is hard to say, though,
that co-location is the interpretation of many agile methods, for instance SCRUM,
which deliberately targets distributed development by separating development pro-
cesses into a hierarchical team structure.

Co-realization is also (indirectly) supportive of agile methods, in the sense that it
objects against the participatory design scene for not moving into the realms of
design-in-use:

With few exceptions, the focus within participatory design projects sel-
dom moves beyond the design phase or the construction of early proto-
types, and onto development and use (Hartswood et al. (2002) quoting
Dittrich, 1998).

87

Chapter 4 Discussion and Analysis

But this is perhaps where the similarities end, because the Agile Manifesto does not
address any organizational consequences of technology, and as such it fails to meet
one of the core criticisms of Hartswood et al. (2002). Symptomatic of this, agile
methods need an acceptance test allocated as a �nal step before deploying a new
feature, the necessity of which must surely be closely related to the absence of user
involvement during coding, unit testing, and system testing. Apart from the nature
of acceptance tests, we can discuss their location in a design and development �ow:
Users should be able to agree to and accept changes to as far an extend as possible.
However, by explicating the location of such tests, we would loose out, both on
smaller design issues or holistic acceptance, as agile methods seek to modularize
and decouple the experience and acceptance testing. This is highly analogous of
bounded design. By means of IT facilitation and an improvised attitude, we can
add acceptance tests anywhere necessary (see the discussion of participation and
non-participation, section 4.3.4).

Co-realization, participatory design, and technomethodology

The criticism from Co-realization towards participatory design takes o�set in the
practice of these design activities and that they seem to be too supportive of IT
professionals and their perceived agendas. The criticism especially targets that the
methods of PD are abolished once construction begins, which is something we can
be argued to be to the consequence of a heavily managed geography/time dispersed
agile process where user input is discarded in favor of management and business.

We must conclude that, despite its declared intentions, participatory
design continues to privilege the role and expertise of IT professionals
over that of users. (Hartswood et al., 2002)

This is not, however necessarily an unintended outcome of PD, and we need to take
into account the very speci�c arguments by the PD advocates that have deliberately
chosen to prioritize an initializing design phase before use:

We do acknowledge of course that there are also design activities later
on in a systems development process, and that users �nd new ways of
utilizing an application after it has been put to use. Further, they might
come up with additional demands, which in turn leads to �continuing
design in use� (Henderson and Kyng, 1991). But for the type of

IT applications addressed here, such later design activities do not
eliminate the need for a good �rst approximation. Rather, we see a
competent initial design as one of the prerequisites for such subsequent
design activities to be successful endeavors. Our method is intended for
these early design activities. (Kensing, 2003)

First of all, participatory design ad Kensing (2003) does not overlook to the oppor-
tunities that arise from design-in-use. Secondly, PD is open to its later adoption,

88

4.4 Risky and rapid design spaces: Scope and applicability

but thirdly, PD methods are not intended for this stage. The latter is quite surpris-
ing as there is still much bene�t to be gained from participatory design techniques,
especially after an IT system has been implemented. PD techniques at such a stage
would merely give the discussion more ground, for instance such that users could
create more insightful ideas from their understanding of the system they have been
exposed to. And perhaps this is where PD falls victim of a wrong perception of the
nature of the IT applications that are relevant, i.e. that it intends to limit design
processes for some type of IT applications addressed which probably does not know
of the technological development tools that hold the qualities of rapid development.

Furthermore, and to add to the criticism of PD's self-in�icted limitations, PD activi-
ties in a contextual environment can establish a way of thinking or culture that paves
the way for day-to-day innovations. Requiring participation in a Co-realization and
rapid fashion also requires that participation takes place on a rapid basis and steadily
re-occurring fashion. It would mean that the IT Facilitation and users could realize
the close coupling of their goals: To gather enough information to create successful
system design, and to deliver enough information for successful system design.

Where we can see Co-realization as a mechanism that pushes methodologies such as
PD further into the development phases, uniting users and developers even closer
through IT facilitation, there is a need for a more direct address towards the devel-
opment of new functions and new products. When an IT system is not in use and its
functionalities are radically di�erent from preceding systems, it becomes harder to
gain quali�ed insights. Real technological artifacts arising from rapid development
help to establish this understanding. But using an undeployed system, we would
be studying a hypothetical usage, subject to a dynamic context, which would ulti-
mately be altered by deploying a new IT system. The case study has argued that
design-in-use became a necessity in cases where participation was clearly lacking due
to tentative deployment, missing real life test data, and direct stakes for the users
giving feedback about system functionalities.

Co-realization involves: attending to the evaluation of technologies; ap-
preciating the bene�t of active user participation; adapting to a partic-
ular organisational setting; the explicit connection of studies of work and
system design; and commitment to a `long-term engagement'. Hartswood
et al. (2002)

The strategy to adopt from Co-realization, should be that of deploying a system as
quickly as possible in order to reap the results of the explicit connection of studies
of work and system design, keeping in mind that a commitment to follow up on this
is critical, and deployment (on whatever level2 or sub-system) is not an achievement
in itself, or as Crabtree (2004) puts it:

Recognition of the real-world uses of ethnomethodology in design prac-
tice opens up the possibility of devising a hybrid methodology that ac-
tively supports the invention of the future. (Crabtree, 2004)

2see for instance canary channels or canary testing and user-driven testing

89

Chapter 4 Discussion and Analysis

Participatory redundancies The case study did not make use of a range of PD
tools and techniques from the in-depth analysis and innovation phases. Although
the study did make use of observational inquiry (during a di�erent much later phase),
the study did not invest resources in any further pre-development design. Why
draw? Why act? Why have workshops? As the previous discussion states, if the
a�ordability of sketching software is very low and re�ects the realistic realm of the
software developer's skills, these activities may not be crucial to the outcome. They
rather re�ect an economic model, in which the developer of the software does not
even exist after a project description and legally binding contract has been signed.
In light of the progression of rapid development technologies, the need for PD tools
can be discussed in terms of resource allocation versus the qualitative outcomes of
their alternatives, i.e. rapid development and rapid prototyping. In this discourse,
the software designers and their organizations can observe PD tools in the in-depth
analysis and innovation phases from a utilitarian perspective and such planning as
nice to have.

4.4.2. Project establishment

Firstly, what is meant by project establishment in this section, is the project work
done prior to any particular design of software. In the description of Participatory
Development, Kensing (2003) lays out project establishment as a negotiation pro-
cess in which common objectives and structures of the succeeding design process
is established. However, there are no limits to the obligations made in the project
establishment in PD. In the case study, I found that there was a lack of not only
organizational structure, but even the a set of common deadlines, obligations, and
identi�cation of roles.

As an IT facilitator, I did reach a satisfactory level of established structure. But the
establishment process was not explicit (rather it was a posteriori reconstruction of
the overall process), nor did it set a deadline or impose any sort of obligations from
the participants. This did not go easily, as there were many cases where the project
was either delayed or space was left in which participation could have occurred.
As such, this is not a one-sided critique of PD, but an acknowledgement that the
lack of structure left room for improvement. Counter to this and PD's idea of the
necessity of an establishment phase, is the fact that the project slowly gathered more
support from the participants as it yielded results. The case study thus showed
that it is possible to re-negotiate obligations and promises of participants as the
project evolves and the risks perceived by users, management and IT facilitator are
eliminated or more clearly assessed.

On an organizational level, the case study suggested a connection between the co-
operative's statutes and the system development phases: Once the system existed,
management was willing to take further decisions, and resolutions to fundamental
problems were found.

90

4.4 Risky and rapid design spaces: Scope and applicability

In light of the circumstantial outcome of the case study and a lacking understanding
of what project establishment should really mean, the results at least show that the
understanding of what project establishment means should not exclude concrete
development of software artifacts. Instead, it should acknowledge that new software
artifacts can in�uence objectives, organizational structures etc. In order to convey
this in a meaningful way, I say that project establishment should be minimized. In
this manner, I do not mean that there should be a speci�c phase with a planned
time limit, but that perhaps the IT facilitator should seek solutions where software
artifacts can help guide important decisions, rather than seeing such decisions as
fundamental and preceding software development.

4.4.3. Assumptions and limitations of agile methods

In two highly related papers, Turk et al. (2002) and Turk et al. (2005), the authors
go through a number of limitations and assumptions, respectively, of agile methods.
In this section, I mention a number of ways that the case study addresses these,
moreover how they are addressed in a wider perspective by risky and rapid design
spaces and its more direct approach to design-in-use.

By dealing with the assumptions of agile development (see Table 4.2), the case for
risky and rapid design spaces is founded in strategic manner. The perception of
agile methods is highly guided by the agile manifesto and the more rigid structures
that it imposes on development methodology. Co-realization does not deal with this
in a very direct way, but once adding rapid development to the mixture, we can see
the IT facilitator role as a remedy to many of the assumptions, although we need to
directly discard of both the idea of distributed development and team coordination.
However, this follows suit to the intention of small, entrepreneurship-like scenarios,
which does not necessarily set the scale for the software project (remember Google
started in a garage).

4.4.4. Prototypes and in-production artifacts: Convergence of
design

Risky and rapid design spaces does not advocate the abolishment of prototypes,
but simply argues a case where they may not be necessary, and suggest that rapid
development tools are perfectly able of creating a transition between in-design and
in-product. Suggesting that the continuously improving software artifact which is
exposed to the user during Co-realization is just a prototype would be wrong, but
suggesting that it is the product would similarly convey a wrong impression as it
might as well be removed, re-done or radically changed.

Convergence already exists In reality, many open source projects have found a
convergence between prototyping and rapid development. They evolve code-�rst,

91

Chapter 4 Discussion and Analysis

discussion after. For instance, if we observe the development nature of the open
source tools that this project is based on, most of the development is done through
constant re-iteration, in which patches are sent in, discussed, and merged into the
development branches or further modi�ed. In this sense, the same artifact �rst
performs as a prototype, then as a product.

In the discussion of how ethnomethodology should subject real technology to user's
design inputs, Crabtree (2004) consistently avoids using the term prototype and
instead gives a full description of the design phase without hinting as to whether
a design artifact should be discardable or transferable to the �nal product, instead
they talk about a loose transition from quick and dirty to further technological
exploration:

Furthermore, in advocating the exploration of topics seen in the breach
through quick and dirty study rapidly followed by further technological
exploration, it is a strategy that puts technology at the centre of things.
It is a strategy in which technological innovation is driven incrementally
through the development of technology and the subsequent study of its
essential social properties, and so provides for the development of fu-
ture technologies that are well grounded in and responsive to the social
circumstances of their use. (Crabtree, 2004)

With the prototypes re�ned and re-iterated, one could argue that the �nal prototype
could be considered the �nal product. However, I have not found any works during
the study that seemed to support such an idea, and for obvious reasons. In order
to distinguish the terms, we see prototype's main property as being discardable in
favor of a full-quality implementation.

Through discussions with other developers of the Django framework, it was espe-
cially argued that this framework was their champion of rapid prototyping. One
lead developer at a larger global web application company advocated that prototyp-
ing should be used whenever possible, but within limits. The notion of prototyping
vs. the �nal product was easy to deal with by always throwing away the code, be-
cause the doubt-�lled choice of writing real code vs. prototyped code risked leaking
prototype intended code into production. To the lead developer, prototyping was
especially essential because �code wins arguments� was a view held in this company.

From the view of sketching designs, and however we may implement PD methods,
it should be clear, that this process cannot continue forever, ie. we cannot continue
to re�ne our prototypes and design documents. But many projects may not be able
to emerge into the a construction phase without some guidance or informed design
decision. Using the case study, however, I have sought to �nd an empirical base to
say that not all systems need such guidance.

The inevitable notion of iteration, however, results in a restraint on the design
phase. Both in theory and practice. In theory, it means that we have to redeploy
a new understanding and then re-gather results within limits to which there exists

92

4.4 Risky and rapid design spaces: Scope and applicability

an upper bound, and in practice it becomes a decision to be made by someone, for
instance the IT facilitator, management or some user acceptance test.

Using risky and rapid design spaces is de�nitely to be contested on the perception of
what costs and complexities are. Even the tools that it relies on are used for many
purposes, one of them being rapid prototyping. The possibility of rapidly developing
does not only apply to design-in-use but also project establishment phases. In this
setting, it is common to use prototyping in order to explore technical aspects of
a solution. But even in later phases of development, i.e. after deployment, rapid
prototyping is still used to explore new features and changes to be added.

The fact that the same tools are used both in design-in-use settings and rapid
prototyping testi�es of the overlap between these two methodologies, alleviating us
from the burden of dogmatic choice or distinction.

4.4.5. Risks

Entrepreneurship can both be seen as a genre of organization or as some innovative
goal of an organization. The scope of the the case study at hand resembles very
much that of an entrepreneurship (see also the background pre-analysis, section 2.6
and the analysis of risks in the project venture, section 3.1.5), moreover that of an
e-entrepreneurship. For instance, in the case of music venues, they have transformed
most parts of their ticket sales and promotional functions into the digital realm and
their business functions will rely greatly on the ticket coop's IT system.

As stated before, we are discarding conventional aspects of the establishment of soft-
ware development, such as a set of requirements, but even the sort of pre-analysis to
guide software design suggested by PD methods. Rather, we prefer a common un-
derstanding of fundamental goals, and thus the whole nature of the project requires
risk-willingness, and in our case these risks were never estimated or explicated. This
is not, however, a bad thing, as such assurances may in themselves be a hindrance
of change:

First, there is the problem of in�exibility; many companies �nd it di�-
cult to change. This may not be true of small, creative organizations but
change will not be easy for those in the global market category. Orga-
nizational change is often stimulated and reinforced by companies that
take the lead and are prepared to take risks. (Mumford, 2003)

The assessment of risks through pre-analysis can have a considerable size compared
to that of rapid development. Once development begins and participants gain a
better perception of risks, the latter can be deconstructed and re-assessed. Because
of lowering costs of development and the possibilities of integrating development and
assess its organizational impact, the alternative to pre-analysis can in theory have
a lower cost. And as the case study shows, also in practice. Moreover, as systems
have organizational consequences and technology changes rapidly, there is a risk of
uncertainty by trying to preempt risks through pre-analysis.

93

Chapter 4 Discussion and Analysis

Addressing risks through rapid development During the study, I found (see
Risks, section 3.1.5) that facilitation was necessary on one hand to guide the partici-
pants when insecure about technology-related risks, but also as a developer to sense
the depth of risks on an economical and organizational level such that inquiries could
be guided and prioritized by this. In the case study, the ability to quickly introduce
new solutions based on managements' perception of a risky issue, served to re-assure
that issues could really be handled. As an IT facilitator, it was possible to target
rapid development at issues that brought about concerns of risks in order to solve
or move on from such issues, because many aspects were speculative and nourished
by lack of a concrete digital artifact.

4.4.6. A general recommendation for future work

Guided by a vision that technological innovation is driven incrementally through the
development of technology and the subsequent study of its essential social properties
(Crabtree (2004)) and the fact that the technology that is supporting these processes
is changing as rapidly as we can design and develop our own new technologies, we
should refactor our design process in that very same fashion. By this I mean that
future work should both adapt to the increasingly rapid development tools and
make suggestions of how they can achieve aims to support the needs of designers
and developers seen as a collective entity.

4.5. Summary

To sum up this analysis of the case study and discussion of the synthesis framework's
applicability, I present a list of the most important conclusions of the discussion and
analysis.

The Case Study: An organization and an IT system simultaneously adapted to
each other. Within a short span of time, a promising IT system was developed.
The case study closely resembled the synthesis framework, and the outcome
shed light on interesting properties of choosing this development approach.

Risky: The case study was relevant as it contained risk-willingness in an entrepreneurship-
like fashion. We saw that rapid development helped to resolve and reassessing
risks during the construction process, such that the riskiness can be said to de-
crease as actual software development occurs. In our discussion, I emphasized
that risks are not necessarily assessable through pre-analysis, especially since
a�ordance of rapid development is high, making pre-analysis unattractive.

and Rapid: I have discussed how to minimize the establishment process and why
this is critical. Furthermore, I showed how, in the case study, I could e�ciently
and iteratively add new features while pro-actively seeking inputs through IT
facilitation and utilizing contemporary rapid development tools.

94

4.5 Summary

Design spaces: By studying and including the organizational context, adding par-
ticipation needed to guide the optimal outcome, using the a�ordance of rapid
development, the term of design space was explored and bene�cial to the
analytical process. The outcome showed that design spaces were not neces-
sarily maximized in some ideal sense but rather circumstantial and constantly
shifted. Not least, they were guided by IT facilitation and expanded by a
user-developer context shared through means of co-realization.

From the overall research methodology applied, we see that there are still many
aspects to be covered and explored, both empirically a analytically. I have presented
a list of the missed points of inquiry that would serve to enlighten the discussion
further (see section 4.2.3). Having analyzed the outcome of applying risky and rapid
design spaces and its intended scope, I �nd its synthesis components worthy of
further exploration.

95

Chapter 4 Discussion and Analysis

Assumption Risky and rapid design spaces (as a strategy)

Visibility Working code is delivered through possibility of rapid
development tools and methods. This is done through a
proper delivery mechanism. If such does not exist, there
should be no claim of a proper design space.

Iteration Through project establishment and mutual understanding,
the project arrives at a construction phase that makes
iteration possible either by design-in-use or IT facilitation

Customer
interaction

IT facilitation should actively decide between participation
and non-participation, having full access to and
acknowledging the overall strategy of the project

Team
communication

Development is always co-located, the project never assumes
a size where teams are dispersed in time and place

Face-to-Face In cases where face-to-face interaction becomes unnecessary,
the IT facilitation may choose other methods of
communication or decision making

Documentation There is no intention of deferring documentation, rather there
are tools to make the production of documentation as rapid as
the development itself.

Self-Evaluation By extending an understanding of organizational objectives
and values and by means of Co-realization, the need for
self-evaluation becomes largely redundant or as critical as any
other self-evalutation.

The Quality
Assurance

There is no restriction on the scope of testing or fragmenting
of the subject of tests. Through rapid delivery, the system
should always be perceivable to its fullest extend. If not, IT
facilitation should schedule later acceptance tests. Original
assumption: Evaluation of software artifacts (products and
processes) can be restricted to frequent informal Assumption
interviews, reviews and code testing.

Table 4.2.: Turk et al. (2005)'s list of common assumptions in agile development:
These are the responses of the study.

96

5. Conclusion

Firstly, the study presented theoretical grounds of a more direct approach to soft-
ware development, for instance how design and development can be perceived as an
iterative continuum. This included an understanding that software design should
adhere to its implications on organizations and social reality, and vice versa.

Through a speci�c small-scale project, I have applied a synthesis software develop-
ment practice of co-realization and rapid development. The outcome of this process
is a description of the concrete, situated use of the synthesis, while making use of
design spaces for analytical purposes. Furthermore, because of the particular suc-
cessful application of the synthesis, I have discussed it in a broader context. The
initial de�nition of risky and rapid design spaces was thus subjected to a practical
and analytical test.

5.1. Findings

Firstly and most fundamentally, the risky and rapid development synthesis was
carried out in a real environment and resulted in real software. This process
showed an improvised and less rigidly structured development process, reliant on
co-realization's concept of IT facilitation. Through experience with the facilita-
tion process, I was able to exemplify how ethnomethodology was useful and design
information was easily obtainable to the IT facilitator.

The outcome of the case study showed an interplay between the IT system devel-
opment and its users and organization. This included an ability, as IT facilitator,
to observe and in�uence organizational aims and practices and design the system
with an anticipation of its sociotechnical nature. Furthermore, it was possible to
adapt organizational practices and IT system functionalities concurrently, and that
this practice relied on participation from the IT facilitator in the shaping of the
organization.

By observing my outcomes and discussing the role of design and development as a
continuum, I have shown that design as a separate, preceding activity of development
can be made redundant under the right circumstances. Furthermore, that design
decisions may arise from artifacts that are instantly deployed or easily transferable
to production as opposed to prototypes and other abstract artifacts.

My �ndings show that it is possible to use IT facilitation to guide participation using
a number of ethnomethodological activities. The ethnomethods were closely linked

97

Chapter 5 Conclusion

to rapid development, which can only take place as a result of the technological
enablers attributed. By gaining information for design decisions by playing the role
of IT facilitator and at the same time utilizing rapid development, the development
model was simpli�ed and e�cient, yet the outcome indicated its qualities through
successful testing. The choice of IT facilitation, however, results in a dependency on
the facilitator's technological tools, but conversely a design space occurs by putting
them to work using a rapid approach.

5.2. Limitations and future work

The case study presented the outcome of a very speci�c setting. Decisions were
circumstantial, technological tools were specialized, IT facilitation relied on a single
character etc. Thus, turning over the development approach of the case study to a
broader perspective and creating a methodology from the discussion and results, is
not straight-forward. The role of the IT facilitator needs much more elaboration, and
the problem of project establishment needs more guidance. Once the iterative pro-
cess of rapid development has arrived, the �ndings indicated a more straight-forward
process which could yield results that are already available from other studies. How-
ever, the path of minimizing project establishment or pre-analysis to make room for
rapid development remains sparsely described.

Whereas it might be easy to suggest a set of methods that work under some perfect
social and organizational settings, it would be harder to generalize and transfer these
settings to a useful category. I have tried to de�ne the likes of entrepreneurship with
respect to risk-willingness, but there are other organizational and social factors that
need elaboration.

Since I was working with online open source communities and made use of their prod-
ucts, the project was in fact in�uenced by practices shared in this global community.
Seeing IT systems and organizations, such as this case study, as a consequence of
a global culture of sharing knowledge and software is also highly relevant. It could
be embedded in the IT facilitator's persona, but since this persona is under the
in�uence of these global trends and the technologies they produce, we should be
highly alert that this has a great deal of impact on projects that choose this path �
of course, most likely a positive kind of impact.

5.3. Recommendations

This study was motivated by a need for a supportive methodology to my own prac-
tices. Likely, there are more areas of the technological and innovative community
that are in the same situation.

98

5.4 Epilogue: A bit of normativity

The research was highly autoethographic, collecting all observations in a personal
diary, through memory, programmatic artifacts and their version control system. I
found the role of participant and researcher a bit distracting from a natural behavior,
but more critically, I was unable to observe the process from outside. There is a need
for further studies of the IT facilitator role in combination with rapid development.
Great insights such as this study can be gained from playing the part as both
researcher and IT facilitator, but an observing counter-part could easily add to this
while addressing many more issues.

With that said, I am sure that both the socio-technological (STS) and software
development arenas and can greatly bene�t from technological practitioners acting
out an autoethnographic role to uncover the social nature of their work.

5.4. Epilogue: A bit of normativity

Seeing that software development methods such as Continuous Delivery are gaining
support from more and more e�cient technologies, software development can bene�t
from this new a�ordance by moving closer to the social realities that it plays part in.
Aided by more e�cient delivery methods, the �elds of agile and rapid development
help to bring about iterative cycles of design-in-use, uniting the developer with users
and organizations in an increasingly closer bond. From my own experience in this
study, I �nd that work is needed to explicate and promote the role of the developer in
the building of organizations and their strategies. When technology is the main tool,
value, and trade of an organization, the developer needs to be able to participate at
a the highest levels and not to be managed and distanced by software methodologies.
By failing to acknowledge and target this, software development methodologies will
ultimately fail to support a socio-technological reality.

99

Acknowledgments

Thanks to everyone who gave me an education, Computer Science dept. at Copen-
hagen University, Computer Science dept. at Utrecht University, and the IT Uni-
versity of Copenhagen.

Thanks to the Django community for being AWESOME!

Thanks to Github for having built the greatest open source sharing platform imag-
inable.

Thanks to the venues who participated.

Thanks to everyone, especially all my roomies, who sent me smiles while I was
self-indulged and preoccupied with this report.

Thanks to mor & far, and rest of family.

101

A. Communication and data

A.1. Project plan

In an email dated February 27th, the following time schedule was laid out. Notice
that the �rst test was scheduled for the 13th, then moved due to venue issues to the
17th. All-in-all the plan was delayed by 10 days.

Plan for February 21 - April 3:

Phase 1 (21/2-27/2): Purchase process (already reviewed)

Phase 2 (28/2-3/3): Management tools, statistics, event reports

Phase 3 (4/3-10/3): Door check-in, barcode scanning, printed ticket format

Phase 4 (11/3-17/3): Fine adjustments, visual identity, texts (optional, eventu-
ally never happened)

Phase 5 (18/3-24/3): Creation of payment provider subscriptions, payment gate-
way interaction, bank accounts, virtual private server (constitution and general
assembly pending, so did not happen)

Phase 6 (25/3-3/4): Testing the full system (happened, but without payment
modules)

A.2. Project description (attached document)

An 8-page project description, drafted, shared, and revised in November/December
2012, is externally attached to the hand-in of this thesis.

A.3. Diary (not attached)

The diary exists as a 31 page document spanning some 37 entries, in Danish and
English, obtainable by request. It is a highly re�ective autoethnographic work, every
entry was written either situated or shortly after events occurred, with exception of
the �rst months of the process, which were written just before the rest of the entries
started �owing in on an approximated daily basis.

102

103

Chapter B Application

B. Application

B.1. Data model, �rst revision (February 21)

Venue
<LogModifications>

id AutoField
created DateTimeField
modified DateTimeField
name CharField
address CharField
email EmailField
homepage URLField
bank_account CharField
bank_name CharField
is_active BooleanField

User

admins (venue)

Promoter
<LogModifications>

id AutoField
created DateTimeField
modified DateTimeField
name CharField
bank_account CharField
bank_name CharField
is_active BooleanField

admins (promoter_admin_set) moderators (promoter_moderator_set)

EventAct
<LogModifications>

id AutoField
created DateTimeField
modified DateTimeField
name CharField
image ImageField
link_title CharField
link_url URLField
embed TextField

Event
<LogModifications>

id AutoField
created DateTimeField
modified DateTimeField
title CharField
slug SlugField
description TextField
poster ImageField
doors DateTimeField
start DateTimeField
end DateTimeField
sale_end DateTimeField
total_maximum PositiveSmallIntegerField
is_cancelled BooleanField
cancelled_on DateTimeField
cancelled_reason TextField

event (eventact)

venue (event) promoter (event)

extra_admins (event)

TicketOffer
<LogModifications>

id AutoField
created DateTimeField
modified DateTimeField
price_currency CurrencyField
price MoneyField
maximum PositiveIntegerField

event (ticketoffer)

TicketPrototype
<TranslatableModel,LogModifications>

id AutoField
created DateTimeField
modified DateTimeField
quantity PositiveSmallIntegerField
is_hidden BooleanField
is_hidden_door BooleanField
is_refundable BooleanField

prototype (ticketoffer)

venue (ticketprototype)

Ticket
<LogModifications>

id AutoField
created DateTimeField
modified DateTimeField
ticket_code CharField
name CharField
address CharField
email EmailField
transaction_id CharField
price_currency CurrencyField
price MoneyField
is_paid BooleanField
is_refunded BooleanField
payment_method PositiveSmallIntegerField

event (ticket)

ticket_offer (ticket)

user (ticket)

Revenue
<LogModifications>

id AutoField
created DateTimeField
modified DateTimeField
revenue_currency CurrencyField
revenue MoneyField
comments TextField
is_transferred BooleanField
date_transferred DateField

event (revenue)

transferred_by (revenue)

104

B.2 Function list

B.2. Function list

The following list names and describes key functions of the ticket system, all of which
resemble a piece of web user interface. The programmatic details are abstracted,
since they do not serve any speci�c purpose to the analysis. All pages are made with
responsive layout techniques and function on both mobile, tablet and PC devices.

All pages are fully translatable (currently Danish and English) and localized � for
instance, currencies can be changed, and dates are displayed in local format.

B.2.1. Purchasing / frontend

Function Description

Event list Lists all events for a given venue, descriptions, dates
and sales status (sold out, few tickets left).

Event view Displays an event with description and a buy form,
from which users can select the number of tickets
desired.

Purchase initialize Creates a temporary ticket in the system and redirects
to the purchase cart form. If the event is sold out, it
redirects to a sold out message. If the event is
temporarily sold out, it redirects to a screen telling the
user to try later. If the concert is canceled, it displays
a cancellation message.

Purchase form Displays a list of tickets added to the purchase and a
form to �ll in name, email, address and phone. Also
displays optional fees.

Payment form Displays the payment form or redirects to a payment
gateway.

Ticket download Is display through a unique, reusable URL which is
also sent via email. Displays the option to download
the ticket. If more tickets are bought, it displays an
option to download all tickets in one PDF. Also
displays social media widgets.

Ticket PDF Displays the name of the event, date, address of venue,
description of event, price of ticket, name of ticket
holder, Ticket ID, barcode, and a list of related events.
If more tickets are requested, it displays all tickets in a
compact list with big enumeration of each ticket.

105

Chapter B Application

Function Description

Ticket email Displays the name of the event, date, address of venue,
price of ticket, and the unique ticket ID. Can be
brought to the venue in place of the ticket PDF. Also
contains the PDF as an attachment.

B.2.2. Management / backend

Function Description

Login screen Username and password form. Users are afterwards
identi�ed by their role, such as user with management
rights for Venue A and/or user with rights to
view/change �nancial �gures.

Event list The main view of all events, future and past. All
columns can be sorted: Title, date, and sales �gures.
Search �eld to �lter by name of event. Every event has
a status indicating if all required �elds have been �lled
in, and if the event is published. Sales �gures are
shown with easy color codes to indicate if they
represent a positive development. The list is paginated,
and each page has the option to display a graph
showing ticket sales of displayed events compared.
Every event has a small menu: Settings, social media,
sales, print ticket list, show tickets, report

Venue settings Displays a form to set the data for the venue: Email,
address, homepage, logo etc.
Displays a form to add new users and to change user
permissions.

Venue ticket

prototypes

Displays all ticket prototypes created for a venue, and
a link to create new prototypes or delete/edit existing.

Create/update

ticket prototype

Form to create/edit ticket prototypes: Name,
description (or usage instructions for ticket buyer),
quantity (how many people are allowed entry),
template (indicates that the prototype should always
be present at newly created shows, and that it has a
price of '0'), online presale (indicates that it can be
purchased online) and door sale (indicating that it will
be shown as an option on the door screen).

106

B.2 Function list

Function Description

Statistics Main dashboard for viewing the progress of future or
un�nished ticket sales. Contains overall �gures for the
venue, history of the past 30 days, links to recent
reports, and the a graph of the latest sales, and a
graph indicating ticket sales the past month.

Ticket list List of all tickets. Can be �ltered by event name,
payment status, and free text search by name, email
etc. The list can also be sorted.
Actions are available for each ticket: Change the ticket
data, resend the ticket email, and refund the ticket.
The full list can be displayed as a PDF with barcodes.

Revenue list Two di�erent lists are avaiable, almost similar: One
displays historical revenue, and another displays new
revenue. New revenue can be marked �Transfered�.
This will move the revenue �gure to historical revenue.
The transfer button results in a con�rmation dialog.
Every revenue �gure contains: The event origin,
amount of tickets, date which is was last updated, and
the total �nancial �gure.

Event create Displays just a few basic �elds for creating an event:
Name, description, musical category, poster upload,
total tickets for sale, and date and time for the doors
to open

Event settings Displays several individual forms and warning
messages about data that needs to be �lled in.
Firstly, the basic form, but more �elds are available,
adding sales end time, event begin time, and event end
time (for events that span several days)
Publish/unpublish button
Add/remove ticket o�ers
Add ticket o�er modal dialogue: For form selecting
ticket prototype, price, maximum sales, maximum per
email, deadline for purchase
List of guest lists. Unique URL for each guest list.
Total number of slots per guest list + slots �lled in (by
the band, promoter etc)
Form for adding a new guest list.
Event access: Grant additional users access to
administer this particular event (promoters).

107

Chapter B Application

Function Description

Social widget Displays the widget to be included on a venue website
and the embed code to include it.

Adjust sales Displays a form to cancel the event or adjust sales after
the event has taken place.
The cancellation form includes a reason for canceling
the event and redirects to a page that starts a process
on the server that sends out con�rmation emails for
every ticket holder and sends feedback to the browser
for every email sent, i.e. the overall progress.
Adjustments can be made for every ticket o�er
available for the event, e.g. normal presale tickets, door
sales etc.

Ticket list PDF An enumerated, printable list of all tickets for an event.
Sorted by Ticket ID. Every ticket has a barcode, name
and email of ticket holder and a �eld indicating if the
ticket has been used (for �lling in with pen and paper).
The list can be used to post-process an event check-in
that has been conducted on paper.

Event report States all data of an event: Sales �gures, revenues, and
added taxes on events such as VAT and Danish KODA
fee. Sums up overall pro�ts after taxes.
A report can be LOCKED by clicking a button, thus
all data for the event become locked throughout the
system.

B.2.3. Check-in

Function Description

Log in First screen: Prompts for username and password,
even though a user is already logged in. This ensures
that management does not grant their privileges to
door sta�.

Select event If more than one event are available or the user has
management rights, a list of events is displayed to
select which event to activate for the check-in screen.

108

B.2 Function list

Function Description

Check-in Main page for checking in guests. Displays the active
event, and the number of presale tickets pending + the
number of people granted access for the event.
3 columns for action: Column 1 has an input �eld
where ticket codes can be entered either through
keyboard or barcode scanner. When all digits of a code
is registered, the code is veri�ed from the list of valid
codes. If it is valid, the overall checked in count is
incremented. An icon displays whether the scan
resulted in a valid or invalid ticket. All scans are
logged on screen and can be reviewed.
Column 2: Displays guest lists. With a click, each
guest list is expanded, and every entry name+guests
can be checked in by means of a con�rmation dialogue.
Once an entry is checked in, it is clearly marked with a
strike-through.
Column 3: Cash sales. All ticket o�ers are displayed,
and by clicking a ticket type, a dialogue prompts the
user, if he/she wants to sell 1 ticket of this type.
If connection is lost, an icon at the top will indicate
that data is processed o�ine and has to be
synchronized in order to avoid data loss.

Ticket list All presale tickets are display with name and email of
ticket holder + ticket ID.
Cash ticket sales are displayed and can be refunded
individually.

109

C. Misc

C.1. Popularity of rapid application development

Rapid Application Development SCRUM

Amazon book search 46 635

Google scholar 12,900 61,400

Google scholar since 2009 3,470 11,700

C.2. COCOMO estimate

Using some simple settings and really just a guide to perceived old fashioned, top-
down approaches, this is the outcome of an estimate of a 10,000 line software project
with a requirement of a large database and high availability, using the COCOMO
model:

E�ort: 19.2 Person-months (using 1 person for most work, and 2 persons for con-
struction)

Person-months Schedule: 12.7 Months

Software Activity Distribution (Person-Months)

Phase/Activity Inception Elaboration Construction Transition

Management 0.2 0.6 1.5 0.3

Environment/CM 0.1 0.4 0.7 0.1

Requirements 0.4 0.8 1.2 0.1

Design 0.2 1.7 2.3 0.1

Implementation 0.1 0.6 5.0 0.4

Assessment 0.1 0.5 3.5 0.6

Deployment 0.0 0.1 0.4 0.7

110

Bibliography

Addison, T., Vallabh, S., 2002. Controlling software project risks: an empirical study
of methods used by experienced project managers. In: Proceedings of the 2002
annual research conference of the South African institute of computer scientists
and information technologists on Enablement through technology. SAICSIT '02.
South African Institute for Computer Scientists and Information Technologists,
Republic of South Africa, pp. 128�140.
URL http://dl.acm.org/citation.cfm?id=581506.581525

Agarwal, R., Prasad, J., Tanniru, M., Lynch, J., 2000. Risks of rapid application
development. Communications of the ACM 43 (11es), 1.

Bentley, R., Hughes, J. A., Randall, D., Rodden, T., Sawyer, P., Shapiro, D., Som-
merville, I., 1992. Ethnographically-informed systems design for air tra�c control.
In: Proceedings of the 1992 ACM conference on Computer-supported cooperative
work. CSCW '92. ACM, New York, NY, USA, pp. 123�129.
URL http://doi.acm.org/10.1145/143457.143470

Beyer, H., Holtzblatt, K., Jan. 1999. Contextual design. interactions 6 (1), 32�42.
URL http://doi.acm.org/10.1145/291224.291229

Botero, A., Kommonen, K.-H., Marttila, S., 2010. Expanding design space: Design-
in-use activities and strategies. In: Proceedings of the DRS Conference on Design
and Complexity.

Chell, E., 2007. Social enterprise and entrepreneurship towards a convergent theory
of the entrepreneurial process. International small business journal 25 (1), 5�26.

Cloud.com, 2011. 2011 Cloud Computing Outlook. Online.
URL http://www.citrix.com/content/dam/citrix/en_us/documents/

products/cloud_computing_survey.pdf

Crabtree, A., 2004. Taking technomethodology seriously: hybrid change in the
ethnomethodology�design relationship. European Journal of Information Systems
13 (3), 195�209.

Dearden, A., Rizvi, H., 2008. Participatory IT design and participatory development:
a comparative review. In: Proceedings of the Tenth Anniversary Conference on
Participatory Design 2008. PDC '08. Indiana University, Indianapolis, IN, USA,
pp. 81�91.
URL http://dl.acm.org/citation.cfm?id=1795234.1795246

111

http://dl.acm.org/citation.cfm?id=581506.581525
http://doi.acm.org/10.1145/143457.143470
http://doi.acm.org/10.1145/291224.291229
http://www.citrix.com/content/dam/citrix/en_us/documents/products/cloud_computing_survey.pdf
http://www.citrix.com/content/dam/citrix/en_us/documents/products/cloud_computing_survey.pdf
http://dl.acm.org/citation.cfm?id=1795234.1795246

Bibliography

Django Software Foundation, 2013. djangoproject.com.
URL https://www.djangoproject.com/

Eisenhardt, K. M., 1989. Building theories from case study research. Academy of
management review, 532�550.

Floyd, C., 1992. Software development as reality construction. Springer.

Geertz, C., 1973. The interpretation of cultures: Selected essays. Vol. 5019. Basic
Books (AZ).

Grudin, J., 1988. Why CSCW applications fail: Problems in the design and evalua-
tion of organizational interfaces. In: Proceedings of the 1988 ACM conference on
computer-supported cooperative work. ACM, pp. 85�93.

Hartswood, M., Procter, R., Slack, R., Voÿ, A., Büscher, M., Rounce�eld, M.,
Rouchy, P., Sep. 2002. Co-realisation: towards a principled synthesis of eth-
nomethodology and participatory design. Scand. J. Inf. Syst. 14 (2), 9�30.
URL http://dl.acm.org/citation.cfm?id=782686.782689

Howard, A., Oct. 2002. Rapid application development: rough and dirty or value-
for-money engineering? Commun. ACM 45 (10), 27�29.
URL http://doi.acm.org/10.1145/570907.570925

Hughes, J. A., Randall, D., Shapiro, D., 1992. Faltering from ethnography to design.
In: Proceedings of the 1992 ACM conference on Computer-supported cooperative
work. CSCW '92. ACM, New York, NY, USA, pp. 115�122.
URL http://doi.acm.org/10.1145/143457.143469

jQuery, 2013. jQuery.com.
URL http://jquery.com/

Juris, J. S., 2007. Practicing militant ethnography with the movement for global
resistance in barcelona. 2007) Constituent Imagination: Militant Investigations/-
Collective Theorization, 164�178.

Kensing, F., 2003. Methods and practices in participatory design.

Kensing, F., Blomberg, J., 1998. Participatory design: Issues and concerns. Com-
puter Supported Cooperative Work (CSCW) 7 (3-4), 167�185.

Krogstie, B., Divitini, M., 2010. Supporting re�ection in software development with
everyday working tools. In: Proceedings of the 9th International Conference on
the Design of Cooperative Systems (COOP).

Latour, B., 1987. Science in action: How to follow scientists and engineers through
society. Harvard university press.

Martin, J., 1991. Rapid Application Development. The James Martin productivity
series. MacMillan.
URL http://books.google.dk/books?id=o6FQAAAAMAAJ

McConnell, S., 2010. Rapid Development: Taming Wild Software Schedules. Mi-
crosoft Press.

112

https://www.djangoproject.com/
http://dl.acm.org/citation.cfm?id=782686.782689
http://doi.acm.org/10.1145/570907.570925
http://doi.acm.org/10.1145/143457.143469
http://jquery.com/
http://books.google.dk/books?id=o6FQAAAAMAAJ

Bibliography

McQuaid, P. A., 2001. Rapid application development: Project management issues
to consider.

Mumford, E., 2003. Redesigning human systems. Irm Press.

Naur, P., 1965. The place of programming in a world of problems, tools, and people.
In: Proceedings of the IFIP Congress. Vol. 65. pp. 195�199.

Neyland, D., 2007. Organizational ethnography. SAGE Publications Limited.

Procter, R., Williams, R., 1996. Beyond design: Social learning and computer-
supported cooperative work - some lessons from innovation studies. Human Fac-
tors in Information Technology 12, 445�463.

Ramsin, R., Paige, R. F., Feb. 2008. Process-centered review of object oriented
software development methodologies. ACM Comput. Surv. 40 (1), 3:1�3:89.
URL http://doi.acm.org/10.1145/1322432.1322435

Sanders, E. B.-N., Brandt, E., Binder, T., 2010. A framework for organizing the
tools and techniques of participatory design. In: Proceedings of the 11th Biennial
Participatory Design Conference. PDC '10. ACM, New York, NY, USA, pp. 195�
198.
URL http://doi.acm.org/10.1145/1900441.1900476

Shelly, G. B., Cashman, T. J., Rosenblatt, H. J., 2011. Systems analysis and design
9th edition. Cengage Learning.

Tahvanainen, A.-J., Steinert, M., 2013. Network! network! network! how global
technology start-ups access modern business ecosystems. ETLAWorking Papers 4,
The Research Institute of the Finnish Economy.
URL http://EconPapers.repec.org/RePEc:rif:wpaper:4

Tjørnhøj-Thomsen, T., Whyte, S. R., 2008. 4. �eldwork and participant observation.
Research Methods in Public Health, 91.

Turk, D., France, R., Rumpe, B., 2002. Limitations of agile software processes. In:
Third International Conference on eXtreme Programming and Agile Processes in
Software Engineering (XP 2002). pp. 43�46.

Turk, D., Robert, F., Rumpe, B., 2005. Assumptions underlying agile software-
development processes. Journal of Database Management (JDM) 16 (4), 62�87.

Twitter, 2013. Twitter Bootstrap - Sleek, intuitive, and powerful front-end frame-
work for faster and easier web development.
URL http://twitter.github.io/bootstrap/

VersionOne.com, 2012. 7th State of Agile Development Survey.
URL http://www.versionone.com/state-of-agile-survey-results/

Weaver, E., Long, N., Fleming, K., Schott, M., Benne, K., Hale, E., 2012. Rapid
application development with openstudio.

113

http://doi.acm.org/10.1145/1322432.1322435
http://doi.acm.org/10.1145/1900441.1900476
http://EconPapers.repec.org/RePEc:rif:wpaper:4
http://twitter.github.io/bootstrap/
http://www.versionone.com/state-of-agile-survey-results/

Bibliography

Wikipedia, 2013a. Agile software development � Wikipedia, the free encyclopedia.
[Online; accessed 26-April-2013].
URL https://en.wikipedia.org/w/index.php?title=Agile_software_

development&oldid=550817798

Wikipedia, 2013b. List of graphical user interface builders and rapid application
development tools � Wikipedia, the free encyclopedia. [Online; accessed 26-
April-2013].
URL http://en.wikipedia.org/w/index.php?title=List_of_graphical_

user_interface_builders_and_rapid_application_development_

tools&oldid=551345360

Wirdemann, R., Baustert, T., 2008. Rapid Web Development mit Ruby on Rails.
Hanser Fachbuchverlag.

Zahra, S. A., Sapienza, H. J., Davidsson, P., 2006. Entrepreneurship and dynamic
capabilities: a review, model and research agenda*. Journal of Management stud-
ies 43 (4), 917�955.

Zutshi, A., Zutshi, S., Sohal, A., 2006. How e-entrepreneurs operate in the con-
text of open source software. Entrepreneurship and innovations in e-business: an
integrative perspective, 62�88.

114

https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=550817798
https://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=550817798
http://en.wikipedia.org/w/index.php?title=List_of_graphical_user_interface_builders_and_rapid_application_development_tools&oldid=551345360
http://en.wikipedia.org/w/index.php?title=List_of_graphical_user_interface_builders_and_rapid_application_development_tools&oldid=551345360
http://en.wikipedia.org/w/index.php?title=List_of_graphical_user_interface_builders_and_rapid_application_development_tools&oldid=551345360

	Contents
	Abstract
	1 Introduction
	1.1 Background
	1.2 Problem statement
	1.3 Contributions of the study
	1.4 Overview

	2 Theory
	2.1 Overview
	2.2 Synthesis definition
	2.2.1 Supporting definitions

	2.3 Ethnography and software development
	2.3.1 Cautious ethnomethodologists
	2.3.2 Design and implementation: A continuum
	2.3.3 Co-realization

	2.4 Rapid Application Development
	2.4.1 Technological acceleration
	2.4.2 Changing organizational structures

	2.5 Risk
	2.5.1 Assumptions of agile development
	2.5.2 Cost of user involvement
	2.5.3 Lowering development costs
	2.5.4 Complexities in software development

	2.6 Entrepreneurship
	2.7 Case and research methods
	2.7.1 Overview of activities
	2.7.2 Project establishment
	2.7.3 Software development and sketching: A reflective process
	2.7.4 Case study methods
	2.7.5 Research methods

	2.8 Summary

	3 Outcome
	3.1 Case study: Organizations, environment, decisions
	3.1.1 Project establishment
	3.1.2 Participants
	3.1.3 Time line
	3.1.4 Nature of the Cooperation
	3.1.5 Risks
	3.1.6 Finding solutions to risks within the meeting space
	3.1.7 Ethnographic bias and IT facilitation
	3.1.8 Planning the project
	3.1.9 Moving towards design-in-use
	3.1.10 Arriving at design-in-use and rapid development
	3.1.11 Hidden decisions
	3.1.12 Testing the system in its real environment

	3.2 Software product
	3.2.1 Application functionality
	3.2.2 Technologies in use

	3.3 Summary

	4 Discussion and Analysis
	4.1 Overview
	4.2 Case study practiced as research
	4.2.1 Research methods
	4.2.2 Case study practices
	4.2.3 Missed points of inquiry

	4.3 Results of the case study
	4.3.1 Contemplating alternatives
	4.3.2 Reducing costs and complexity
	4.3.3 Technological enablers
	4.3.4 Participation vs. non-participation

	4.4 Risky and rapid design spaces: Scope and applicability
	4.4.1 Design-in-use; Co-realization, PD, and agile methods
	4.4.2 Project establishment
	4.4.3 Assumptions and limitations of agile methods
	4.4.4 Prototypes and in-production artifacts: Convergence of design
	4.4.5 Risks
	4.4.6 A general recommendation for future work

	4.5 Summary

	5 Conclusion
	5.1 Findings
	5.2 Limitations and future work
	5.3 Recommendations
	5.4 Epilogue: A bit of normativity

	Acknowledgments
	A Communication and data
	A.1 Project plan
	A.2 Project description (attached document)
	A.3 Diary (not attached)

	B Application
	B.1 Data model, first revision (February 21)
	B.2 Function list
	B.2.1 Purchasing / frontend
	B.2.2 Management / backend
	B.2.3 Check-in

	C Misc
	C.1 Popularity of rapid application development
	C.2 COCOMO estimate

	Bibliography

